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ZusammenfassungIn dieser Arbeit behandele i
h die Verbindung von Geometrie und logarithmis
h konformenFeldtheorien. Dabei betra
hte i
h zwei vers
hiedene geometris
he Situationen: in Teil I dastopologis
he A-Modell mit Einbettungsabbildung x : R×S1 → CP
1 und in Teil II konforme,fermionis
he Geister auf dem Torus.Das A-Modell lässt si
h in eine Form bringen, in der das Pfadintegral eine δ-Distributionauf dem Modulraum der Instantonen ist. Integriert man die Abhängigkeit von S1 heraus, er-hält man eine Morsetheorie auf der universellen Überlagerung �LCP1 des Loop-Raumes. DerenNiedrigenergie-Zustandsräume lassen si
h in Zellen dieser Mannigfaltigkeit störungstheo-retis
h bestimmen und dur
h Darstellungsräume des Chiralen de Rham-Komplexes bes
hrei-ben. Unter der Annahme, dass die Darstellungstheorien des A-Modelles und des Chiralende Rham Komplexes übereinstimmen, betra
hte i
h im Folgenden den Chiralen de Rham-Komplex. Die Zustandsräume sind lokale, induzierte Darstellungen der Symmetrie, die dur
hdas Gradientenfeld der Morsefunktion erzeugt wird. Entspre
hend einer Hypothese von E.Frenkel, A. Losev und N. Nekrasov führt eine Verallgemeinerung dieser lokalen Darstellungenals Distributionen auf �LCP1 zu quantenexakten Zuständen der Theorie. Auf diesen Zustän-den muss der Hamiltonoperator dur
h zusätzli
he Terme korrigiert werden. I
h diskutiere dieDarstellungstheorie der quantenexakten Zustände und bestimme die Deformationsterme desHamiltonoperators. I
h zeige, dass diese eine geometris
he Deutung als Kohomologieopera-toren in einem Komplex global erweiterter lokaler Darstellungsräume haben. Zuletzt zeigei
h, dass den zusätzli
hen Termen im Hamiltonoperator der Morsetheorie eine logarithmis
heErweiterung des 
hiralen de Rham-Komplexes entspri
ht.Die konformen, fermionis
hen Geister aus Teil II transformieren si
h in irreduziblen Darstel-lungen der Monodromiegruppe Z2. I
h zeige, dass die dur
h sie bes
hriebene konformeFeldtheorie logarithmis
h erweitert werden muss, sobald man zu den Darstellungen derMonodromiegruppe Felder assoziiert, die si
h frei auf dem Parameterraum CP

1 \ {0,1,∞}bewegen. Das Tripletmodell stellt eine minimale logarithmis
he Erweiterung dieser Theoriedar und bildet die Grundlage meines letzten Kapitels. Darin drü
ke i
h die spektrale Kurveder SU (2)-Seiberg-Witten Theorie dur
h die Charaktere des Tripletmodelles aus, und führeebenfalls das Präpotential auf dieses Modell zurü
k, indem i
h es als Funktion des Modulusder spektralen Kurve gewinne.
Schlagworte: Ni
htlineares Sigma Modell, Logarithmis
h Konforme Geister, Seiberg Wit-ten Theorie
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AbstractThis thesis is about the relation of geometry and logarithmi
 
onformal �eld theories. I
onsider two di�erent geometri
 settings: in part I the topologi
al A-model with embedding
x : R×S1 →CP

1, and in part II 
onformal, fermioni
 ghosts on the torus.The A-model 
an be transformed su
h that the path integral yields a δ distribution onthe moduli spa
e of instantons. Integrating out the dependen
y on S1, one obtains Morsetheory on the universal 
over �LCP1 of loop spa
e. Its low-energy state spa
e 
an be derivedperturbatively in 
ells of this manifold, and 
an be modelled by the representations of the
hiral de Rham 
omplex. Assuming that the representation theory of the A-model andthe 
hiral de Rham 
omplex are identi
al, I 
onsider the 
hiral de Rham 
omplex in thefollowing. The state spa
es are lo
al, indu
ed representations of the symmetry generated bythe gradient ve
tor �eld of the Morse fun
tion. A

ording to a 
onje
ture of E. Frenkel, A.Losev and N. Nekrasov, a generalization of these lo
al representations as distributions on
�LCP1 leads to nonperturbative states of the theory. On these states, the Hamiltonian mustbe 
orre
ted by additional terms. I dis
uss the representation theory of the nonperturbativestates and determine the terms whi
h deform the Hamiltonian. They have a geometri
signi�
an
e as 
ohomology operators in a 
omplex of globally extended lo
al representationspa
es. Eventually, I prove that a logarithmi
 extension of the 
hiral de Rham 
omplex
orresponds the additional terms in the Hamiltonian.The 
onformal, fermioni
 ghosts of part II transform in irredu
ible representations of themonodromy group Z2. I show that the 
onformal �eld theory of these �elds has to be loga-rithmi
ally extended as soon as the representations of the monodromy goup are allowed tomove freely on the parameter spa
e CP

1 \ {0,1,∞} of the torus. The triplet model 
onsti-tutes a minimal logarithmi
 extension of this theory and is fundamental for my last 
hapter.Therein I obtain the spe
tral 
urve of SU (2) Seiberg-Witten theory in terms of 
hara
ters ofthe triplet model. Further, I tra
e ba
k the prepotential to that model by expressing it as afun
tion of the torus modulus of the spe
tral 
urve.
Key words: Nonlinear Sigma Model, Logarithmi
 Conformal Ghosts, Seiberg Witten Theory
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Introduction 1This thesis was initiated by my interest in the relation between geometry and physi
s. It wassin
e I got to know the publi
ation of V. G. Knizhnik [Kni87℄ that I wanted to investigatethe geometri
 signi�
an
e of the aspe
ts whi
h render a 
onformal �eld theory logarithmi
.Knizhnik 
onsiders holomorphi
 di�erential forms on algebrai
 surfa
es whi
h are bran
hed
overings of CP1 and have a global Zn monodromy group. The di�erential forms 
an be iden-ti�ed with 
onformal fermioni
 ghosts, and the monodromy group has an indu
ed a
tion onthese �elds, whi
h thus fall into n irredu
ible representations. In the spirit of 
onformal �eldtheory (CFT), these representations are realized by lo
ating the 
onformal �elds isomorphi
to the respe
tive highest weight ve
tors at the bran
h points. In mathemati
al terms, thisamounts to restri
ting the di�erential forms to a neighborhood of a bran
h point and to
onsidering representation theory thereon.If the algebrai
 surfa
e has bran
h points ei , i ∈ {1, . . . ,2N }, N ≥ 2, one may turn the surfa
einto a family of topologi
ally equivalent surfa
es by allowing 2N−3 bran
h points to vary over
CP

1 \
⋃2N−3

i=1
{ei }. This helps to extra
t further geometri
 information, su
h as degenera
ieswhen bran
h points are fusing, or periods, whi
h satisfy di�erential equations with respe
tto the �oating parameters.Although my investigations started with the work of Knizhnik, I will dis
uss this settingin the se
ond part of my thesis. There, I will 
onsider the CFT realization of both, degen-era
ies and periods for the algebrai
 surfa
e being a torus. The di�erential equation for itsperiods is realized as the nullstate 
ondition for the odd representation of the monodromygroup Z2. Therefore, the four-point fun
tion of the so-
alled twist �eld 
orresponding tothis representation is proportional to the periods of the torus. In parti
ular, it 
ontainslogarithms and the fusion of two bran
h points, whi
h is simulated by the operator produ
texpansion (OPE) of two su
h �elds, yields a doublet representation of the symmetries of the
onformal fermioni
 ghost system. The Hamiltonian is not diagonalizable on this doublet,whi
h signi�es that the CFT has to be extended to a logarithmi
 
onformal �eld theory(LCFT). The minimalisti
 way to do this will lead to the triplet model, as explained by M.Flohr in [Flo98℄.This setting has been the starting point for my publi
ation with M. Flohr [VF07℄. As thetorus is the spe
tral 
urve of pure gauge, SU (2) Seiberg-Witten theory, we wanted to expressthe prepotential in terms of 
hara
ters of the triplet model. Although we only obtained theprepotential in terms of the torus modulus, whi
h equals the ratio of twist �eld four-pointfun
tions, we have been able to determine the spe
tral 
urve by means of su
h 
hara
ters.This will be the subje
t of 
hapter 9 in part II.

1



The origin for my se
ond main proje
t, des
ribed in part I of this thesis, is the workof E. Frenkel, A. Losev and N. Nekrasov [FLN06, FLN08℄, who investigated Morse theoryand the topologi
al A-model beyond their topologi
al se
tors. What is implied by those
onsiderations?(Cohomologi
al) topologi
al �eld theories deal with global geometri
 obje
ts on manifolds,in parti
ular with di�eomorphism invariants that are in the 
ohomology of some nilpotentoperator Q, 
alled Be

hi-Rouet-Stora-Tyutin (BRST) 
harge due to its properties. It hasan a
tion on the �elds and state spa
es of the theory and the elements in its 
ohomology
lasses 
omprise what is 
alled the topologi
al se
tor of a �eld theory.Under 
ertain 
ir
umstan
es a �eld theory has in addition to its topologi
al se
tor further�dynami
al� states and observables. While the 
ohomology of Q is invariant under di�eo-morphisms, this is not the 
ase for the dynami
al se
tor. Hen
e, the dynami
al degreesof freedom should in prin
iple des
ribe part of the lo
al geometry of the target or domainmanifold.In [FLN06℄, Frenkel, Losev and Nekrasov 
onsider the situation des
ribed above for Morsetheory with a �rst order Lagrangian on a Kähler manifold X with s
aled metri
 λg , λ ∈R
>0.The perturbative spe
trum of this theory in
ludes topologi
al as well as dynami
al states.If X is supplemented with an additional stru
ture, these states have their support on thedes
ending manifolds of the gradient ve
tor �eld of the Morse fun
tion. Moreover, thesubmanifolds yield a disjoint 
over of X , and so do the perturbative state spa
es.The lo
al geometry of X 
an be a

essed employing the dynami
al states. For λ→ ∞,the Hamiltonian be
omes the Lie derivative in dire
tion of the gradient ve
tor �eld of theMorse fun
tion. The perturbative state spa
es whi
h survive that limit turn into lo
allyde�ned indu
ed representations of the symmetry generated by the gradient �eld. This is,metaphori
ally, what an observer lo
ated on a des
ending manifold would expe
t to see.However, Frenkel, Losev and Nekrasov 
laim that there are nonperturbative e�e
ts throughwhi
h the observer obtains additional insights into the lo
al representations of the Hamil-tonian on X . They propose that the nonperturbative state spa
es are obtained by ex-tending the perturbative state spa
es as distributions to X and their analysis shows thatthe thus globalized representations are the lo
al 
ohomology groups in a 
omplex 
alled theglobal Grothendie
k-Cousin 
omplex, [Kem78℄. This 
omplex has a 
ohomology operator,the Grothendie
k-Cousin operator (GCO), whi
h 
ompounds the lo
al representation spa
esand appears as an additional term in the Hamiltonian. The observer is thus 
onfrontedwith a Hamiltonian whi
h 
an not be diagonalized on all dynami
al states � a situation wellknown in the theory of logarithmi
 CFTs.My initial interest in the work of Frenkel, Losev and Nekrasov [FLN06℄ arose from theirproposal that the topologi
al A-model in the large volume limit is an LCFT beyond itstopologi
al se
tor. In [FLN08℄, they redu
e the A-model with embedding x : R

1 ×S1 →CP
1

2



to the Morse theory of [FLN06℄ by integrating out the dependen
e on S1. In parti
ular,one 
an derive the perturbative state spa
es and it appears that they 
an be modelled byrepresentation spa
es of the 
onformal supersymmetri
 ghosts (CSb
) with target spa
e CP
1.It is now suggestive to assume that at least the representation theory of the A-model in thelarge volume limit equals that of the CSb
 and the theories 
an, a

ordingly, be substituted.Furthermore, Frenkel, Losev and Nekrasov propose the deformation of the Hamiltonian,but do not analyze the extension of the representation spa
es in detail. Moreover, in orderto prove their 
onje
ture that the A-model is an LCFT in the large volume limit and beyondits topologi
al se
tor, it is not su�
ient to 
onsider the underlying Morse theory. A loga-rithmi
 deformation of the CSb
 has to be found, whi
h yields the 
orre
t extensions of theperturbative representation spa
es and adds the deformation terms to the Hamiltonian. Itis only then, that the Grothendie
k-Cousin operators 
an be interpreted as the zero modesof the logarithmi
 improvement terms whi
h deform the energy momentum tensor. Parts ofthose 
onsiderations have been addressed in my se
ond publi
ation with M. Flohr [VF09℄.As mentioned above, this thesis has two parts, the �rst treats the logarithmi
 extension ofthe CSb
 underlying the A-model, the se
ond is about fermioni
 ghosts on the torus and theirrelation to Seiberg-Witten theory. Before I start with an outline, I will brie�y 
omment on theappendix, whi
h serves to supplement the main part. In appendix A I summarize and spe
ifythe basi
 ingredients of a topologi
al �eld theory [BBRT91, Wit82, Wit88a, Wit88b℄. Inappendix B.1 I brie�y explain how the topologi
al A-model is obtained by twisting an N = 2supersymmetri
 sigma model and note down the supersymmetry of this theory [Mar05℄. Thelast appendix C is the foundation of another publi
ation, wherein I study the possibility togeneralize the approa
h of Frenkel, Losev and Nekrasov [FLN08℄, by whi
h they deform theHamiltonian of the A-model, to a deformation of the asso
iated CSb
.

Part I In the following 
hapter 2, I will start with a dis
ussion of Morse theory. Therein, thegeometri
 origin of the deformation operators is dis
ussed and the 
onditions on the targetspa
e manifold are �xed. This 
hapter follows the publi
ation of Frenkel, Losev and Nekrasov[FLN06℄, but some subtle points are treated in more detail. In parti
ular this 
on
erns theextension of the perturbative representation spa
es. I will propose an alternative ansatz forthe extension, whi
h relies on a prin
iple by whi
h I 
an enlarge the representation spa
es.This ansatz is appli
able in the 
ontext of the A-model.In 
hapter 3, I will introdu
e the A-model with target spa
e CP
1 and take the large volumelimit. Redu
ing the thus obtained theory to Morse theory, I will derive the perturbative statespa
es and explain why they 
an be modelled by the CSb
. Be
ause the A-model is de�nedon CP

1, it is ne
essary to make 
hart transitions. For the CSb
, these transitions are de�nedthrough the 
hiral de Rham 
omplex, whi
h I will also introdu
e. My method to derivethe deformation of the Hamiltonian di�ers again from that of Frenkel, Losev and Nekrasov
3



[FLN08℄. It relies 
ru
ially on bosonization, whi
h I will dis
uss in detail. It will be importantthat the holomorphi
 and anti-holomorphi
 �halves� of the CSb
 are 
onsidered together, notonly be
ause of anomalies o

urring but also be
ause the GCOs are 
omposed of both parts.Indeed, I will explain that this 
omposition 
onstrains the representation spa
es and thesymmetries of the theory.Having determined the perturbative representation spa
es, their extensions, and the Gro-thendie
k-Cousin operators that mediate between them, I will then move ba
k from Morsetheory to the 
onformal �eld theory. In 
hapter 4, I will use the method of Fjelstad etal. [FFH+02℄ to deform the CSb
 logarithmi
ally. I will do that in su
h a way that therepresentation spa
es are extended 
onsistently and that the GCOs are added to the Hamil-tonian. This has an e�e
t on the operator produ
t algebra of the �elds, but neither on thesupersymmetry nor the 
onformal symmetry of the CSb
.I will 
on
lude this part of the thesis with a brief summary and dis
ussion in 
hapter 5.
Part II In part two I will 
on
entrate on the fermioni
 
onformal ghosts on bran
hed 
over-ings of CP1 [Kni87℄. After a brief motivation in 
hapter 6, I will spe
ify the algebrai
 surfa
esunder 
onsideration and introdu
e the 
onformal ghosts in 
hapter 7. Sin
e they will havenontrivial operator produ
t expansions in a neighborhood of a bran
h point it is ne
essaryto extend the representation spa
es by the representations of the monodromy group.In the the subsequent 
hapter 8, I will derive by geometri
 arguments that the fermioni
ghosts on the torus ne
essarily 
omprise a logarithmi
 
onformal �eld theory. The minimalversion is the triplet model [Flo98℄, whi
h I will introdu
e in 
hapter 8.3.In the last 
hapter 9, I will explain how the spe
tral torus of pure gauge Seiberg-Wittentheory 
an be obtained from 
ertain 
hara
ters of the triplet model and note down anexpression of the prepotential whi
h is given 
ompletely in terms of quantities of this LCFT.The thesis will be 
on
luded with a summary and a dis
ussion of open questions in thelast 
hapter 10.
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Supersymmetric Ghosts with Values

on the Sphere





Morse Theory 2This 
hapter has three parts. My starting point will be Morse theory on a general Riemanniansurfa
e X with s
aled metri
 λg and symple
ti
 form ω.Firstly, I will prepare the topologi
al se
tor of this theory by breaking CPT invarian
e andby making lo
alization on the instantons expli
it. This amounts to 
onse
utively putting
onstraints on X . The 
onstraints will be su
h that the instanton se
tors are well de�ned andthat the gradient �eld 
orresponding to the Morse fun
tion de
omposes X into submanifolds,to ea
h of whi
h one 
an perturbatively asso
iate a state spa
e. Among those, there areex
ited states whi
h are not s
aled out in the large volume limit λ→∞.Frenkel et al. proposed [FLN06℄ that the state spa
es in the limit λ→∞, when generalizedas distributions on X , 
omprise the nonperturbative low energy spe
trum. In se
tions 2.4and 2.5 I will dis
uss some 
onsequen
es of this assumption for Morse theory on CP
1, mainlyfollowing their publi
ation but also with an additional dis
ussion of the 
ohomology of thesuper
harge, as well as a di�erent method for extending the state spa
es as distributions. Themost important observation will be that observables whi
h in
lude exterior derivatives areno longer diagonalizable on all states. In parti
ular, this 
on
erns the Hamiltonian and thusdraws a similarity to logarithmi
 
onformal �eld theories. Rather, those operators intermixthe state spa
es whi
h formerly have been lo
ated in di�erent 
harts.Finally, I will dis
uss the physi
al and geometri
al meaning of this sort of non-lo
ality,whi
h is due to the non-topologi
al states.This 
hapter will be 
on
luded with a generalization of the toy model to a 
lass of manifolds

X and will be the basis for an understanding and analysis of the Morse theory underlyingthe topologi
al A-model. My explanations rely mostly on [FLN06, BBRT91, Wit82℄.
2.1 The Path Integral Point of ViewIn terms of the stru
tures just introdu
ed, the Morse theory I will 
onsider 
onsists of aRiemannian surfa
e X , a smooth embedding x : Σ ⊆ R → X , its Grassmann valued super-partner ψ and another Grassmann valued quantity π, whi
h is the 
onjugate momentum of
ψ. The Eu
lidean metri
 g on X is s
aled by some parameter λ ∈ R

>0 and, without loss ofgenerality, I �x a 
onne
tion D to be the Levi-Civita 
onne
tion, de�ned with positive signon ∂
∂xµ : Dν

∂
∂xµ = ∂

∂xλΓ
λ
νµ.
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Let f : X → R be Morse, i.e. single valued and with isolated 
riti
al points xc : d f (xc ) = 0,and denote further by Dtψ
µ = dψµ

dt +Γ
µ

λσ
dxλ

dt ψσ the pullba
k of D to Σ and by ∇µ f := gµν∂ν fthe gradient of f . In lo
al 
oordinates, the a
tion I am interested in is
Sλ =

∫

Σ

(1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν∂µ f ∂ν f

+ iπµ∇tψ
µ− iπµ

(
Dα∇µ f

)
ψα+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.1)In the following se
tions I will extra
t its topologi
al se
tor, sele
ting either the instantonsor anti-instantons and by spe
ifying several 
onditions on X .Sin
e d f (xc ) = 0, the Hessian H (x)[γ] := Dγ(d f )(x), γ ∈ Tx X does not depend on the 
hoi
eof the 
onne
tion at a 
riti
al point xc . In lo
al 
oordinates it reads Hµν(xc ) = ∂µ∂ν f (xc ).There exists a basis eµ of tangent ve
tors at Txc
X in whi
h it is diagonal with eigenvalues

κc µ : H (xc) eµ = κc µ eµ. The 
ondition that the 
riti
al points are isolated is equivalent tothe 
ondition that H (xc) has no zero eigenvalues. Sin
e the Hessian does not depend on the
onne
tion, it is reasonable to de�ne an index for every 
riti
al point
ind(xc ) = #{µ : κc µ < 0}, (2.1.2)whi
h is a topologi
al invariant.In order to see what the 
lassi
al solutions are, I will for a moment 
on
entrate on thebosoni
 part. One 
an apply the so-
alled �Bogomlny tri
k� to �nd the absolute minima ofthe a
tion:

Sbos =
∫

Σ

(
λ

2

(
dxµ

dt
∓∇µ f

)2

±λ
d f

dt

)
dt . (2.1.3)Sin
e it was positive semi-de�nite before, I obtain a lower bound

Sbos ≥
∣∣∣∣
∫

Σ

d f

∣∣∣∣ , (2.1.4)whi
h is satis�ed by the gradient traje
tories
dxµ

dt
±∇µ f = 0. (2.1.5)These are the 
lassi
al bosoni
 solutions to δS = 0. There are three kinds, depending on theboundary 
onditions. The va
uum 
on�gurations are solutions of

dxµ

dt
= 0 ∧ ∇µ f (x) = 0, (2.1.6)whi
h is satis�ed by 
onstant loops, i.e. the 
riti
al points xc . If there exists more than one
riti
al point, say {x+, x−}, there are also instanton (−∇ f ) and anti-instanton 
on�gurations(+∇ f ) :

dxµ

dt
±∇µ f (x) = 0 , x(±∞) = x± (2.1.7)where w.l.o.g. I �xed some initial and �nal time. From (2.1.4) one 
an 
on
lude that theinstantons satisfy f (x+) > f (x−) and the anti-instantons f (x+) < f (x−).

8



2.1.1 Making CPT Breaking and Localization ManifestThe anti-instantons 
an be ex
luded from the 
lassi
al minima by subtra
ting λ
∫

d f fromthe a
tion (2.1.1). This term does not depend on the metri
 and is hen
e topologi
al. It,however, breaks CPT invarian
e as one would expe
t for a theory without anti-instantons.1In order to make the lo
alization property manifest, I massage the a
tion S −λ
∫

d f into a�rst order form, by introdu
ing a Lagrangian multiplier pµ. Viewed as part of the integrationkernel exp{−S} in the path integral, I may now 
onsider, equivalently to (2.1.1):
Sλ =

∫

Σ

(
− ipµ

(
dxµ

dt
− gµν∂ν f

)
+

1

2λ
gµνpµpν

+ iπµ

(
Dtψ

µ− (Dα∇µ f )ψα
)
+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.8)In the limit λ→∞, the integral kernel turns into a δ distribution on instanton moduli spa
e,whi
h makes lo
alization expli
it. Indeed, for �nite λ, the instantons still 
ontribute witha weight fa
tor e−2λ|f (x+)− f (x−)| to 
orrelation fun
tions, but for λ → ∞ their 
ontributiondisappears. On the 
ontrary, the instantons 
ontribute with a 
onstant weight fa
tor 1 forany value of λ.Let vµ(x) := ∇µ f (x) be the ve
tor �eld asso
iated with f and p ′
µ := pµ +Γ

λ
µνψ

νπλ. Thea
tion in the large volume limit 
an now be written as:
S∞ =−i

∫

Σ

(
p ′
µ

(
dxµ

dt
−vµ

)
−πµ

(
dψµ

dt
−ψα∂αvµ

))
dt . (2.1.9)It is invariant under the following susy transformations

[Q , xµ] =ψµ, [Q ,ψµ] = 0 [Q∗, xµ] = 0, [Q∗,ψµ] = vµ

[Q ,πµ] = p ′
µ, [Q , p ′

µ] = 0 [Q∗,πµ] = 0, [Q∗, p ′
µ] = 0

(2.1.10)and moreover, the Lagrangian is Q-exa
t, L =−i[Q ,πµ

(
dxµ

dt −vµ
)
] and thus is the Hamiltonian.This is roughly the model I am going to 
onsider. However, I will need some more infor-mations on the instanton moduli spa
e, espe
ially in order to �nd 
onstraints on the targetmanifold. There will be serveral obsta
les whi
h have to be resolved and I will list them up,whenever I en
ounter one. In the following and for 
onvenien
e, I will leave away the primefor p ′

µ.
2.1.2 The Instanton Moduli SpaceThe instanton equation dxµ

dt = vµ(x) gives rise to a symple
tormorphism of X , i.e. Lvω= 0:
φv : X ×Σ→ X x 7→φv (x, t ) = x(t ) , (2.1.11)

1Though for the model under consideration CPT is really CT, I will follow the terminology of Frenkel, Losev and

Nekrasov [FLN06]. For a more detailed discussion of CPT breaking, c.f. section 2.2.4.
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where x(t ) is an instanton solution and φv (·, t ) determines a one parameter group in t . Bymeans of this �ow equation of v one 
an try to �nd a partition of X into submanifoldswhi
h is generated by the �xed points of v . These will be the des
ending Xc and as
endingmanifolds X c :
X (c)

c :=
{

x ∈ X : lim
t→ (+)

− ∞
φv (x, t )= xc

}
. (2.1.12)If xc is a nondegenerate 
riti
al point and φv a di�eormorphism, they are indeed submanifolds[AR67, pg. 87f℄ and inherit the tangent spa
es de�ned by the �ow lines.For the following reason I demand that a de
omposition of X into des
ending and as
endingmanifolds exists. In se
tion 2.2.4 I will explain that the state spa
es will be lo
alized aroundthe �xed points of v . A de
omposition of X in terms of, say, des
ending manifolds is usefulbe
ause one 
an then 
anoni
ally asso
iate to ea
h su
h submanifold a state spa
e Fα andthese 
over X . Therefore:

❏ The target manifold X has a (Bialyni
ki-Birula) de
omposition
X =⊔

α∈A Xα =⊔
α∈A X α with respe
t to v .The instanton moduli spa
es are de�ned by means of des
ending and as
ending manifolds

M (α,β) := Xα∪X β , (2.1.13)and under further 
onditions it is possible to 
al
ulate the dimension of this moduli spa
e.Let xc be a 
riti
al point, I 
an 
hoose lo
al 
oordinates su
h that it is lo
ated at the origin.In its neighborhood I 
an approximate a solution of the instanton equation by a line ele-ment y = xc +x and by making a Taylor expansion around the 
riti
al point. This yields tolowest order dt xµ−H
µ
ν (0)xν = 0, whith Hessian H evaluated at xc = 0. Thus, lo
ally aroundthe �xed point, the dire
tions along whi
h H has positive eigenvalues span the tangentspa
e of the des
ending manifold while the others span the tangent spa
e of the as
endingmanifold. Therefore, at least in a neighborhood of a �xed point xc , T Xc ≃ R

dimX−ind(xc ) or
≃C

dimCX− 1
2

ind(xc ) while for the as
ending manifold T X c ≃ R
ind(xc ) or ≃C

1
2

ind(xc ). The general-ization of this 
ondition is as follows:
❏ Let ( f , X ,λg ) allow for Morse-Smale transversality, i.e.

∀ x ∈M (α,β), ∀ α,β : dim Tx Xα+dim Tx X β−dim X = dim
(
Tx Xα∪Tx X β

).One 
an now 
al
ulate
dimR M (α,β) = ind(β)− ind(α) . (2.1.14)The Morse-Smale 
ondition yiels a ni
e des
ription of the tangent spa
es of X in terms ofinstanton �ow lines. Espe
ially the dimensions of the instanton moduli spa
es are naturalnumbers in
luding zero, restri
ted by the dimension of the target manifold, and there are nodimensional degenera
ies. Sin
e it is expressed by the Morse inde
es, the dimension of theinstanton moduli spa
e is a topologi
al invariant. Morse-Smale transversality does further
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restri
t the �ow lines to move from �xed points with lower to �xed points with higher Morseindex.There is another, physi
ally inspired way to 
al
ulate the dimension of the instanton mod-uli spa
e [H+03, se
. 10.5.2℄. Consider an instanton solution x : dt xµ− vµ(x) = 0, xµ(−∞) =
x
µ
α, xµ(∞) = x

µ

β
. Again, I will move in the solution spa
e of this di�erential operator toanother solution y = x +ηz, where η > 0 is an in�nitesimally small number. The 
urve y isan instanton solution if the displa
ement z satis�es D−z := ( dt −H (x(t )) ) z = 0, z(±∞) = 0to the order η. For every t I may 
hoose a basis of eigenve
tors of H (x(t )) with eigenvalues

κµ(t ) whi
h spans the tangent spa
e Tx(t )X . The operator D− is diagonal in this basis andhas homogeneous solutions
zµ(t ) = eµexp(

∫t

0
κµ(τ)dτ) , (2.1.15)where eµ diagonalizes D− at t = 0. These solutions have the 
orre
t boundary 
onditions if

κµ(−∞) > 0 and κµ(∞) < 0.There are two possible s
enarios. The �rst is that the dimension of the solution spa
eequals the dimension of the eigenspa
e of the Hessian. This is the 
ase if none of theeigenvalues κµ(t ) 
hanges its sign from a negative to a positive value when passing from
t =−∞ to t =∞. If this is satis�ed, dimRM (α,β) = ind(β)−ind(α) = #{µ : κµ(−∞) > 0, κµ(∞) <
0} = dimkerD−. In the se
ond s
enario there exist eigenvalues whi
h 
hange their signs fromnegative to positve value. They belong to homogeneous solutions of the di�erential operator
D+ := dt +H (x(t )). In that general 
ase, the di�eren
e ind(β)− ind(α) 
an be written as

dimRM (α,β) =dim kerD−−dim kerD+ . (2.1.16)The operators D∓ appear in the equations of motion for the fermions ψµ and πµ, re-spe
tively. Under the assumption that the dimension of the instanton moduli spa
e equals
dim kerD−, it further equals the number of linear independent solutions of D−ψ0,l = 0, l =
1. . . d , d = dimM (α,β), whereas πµ has no �zero modes�. This leads to the sele
tion rule thatobservables have to 
ontain a produ
t ∏d

l=1
ψ0,l , if the 
orrelation fun
tion is not to be zero.The reason is that the path integral is a δ distribution on the homogeneous solutions of D−and the instanton 
on�gurations x0

〈O〉 =
∫

M (α,β)

∏

l=1...d

ψ0,l O |M (α,β) . (2.1.17)An integral over Grassmann variables is zero if the integrand is not a volume form, and in thenext se
tion I will make 
lear that, indeed, the zero modes of ψ have a geometri
 meaning asdi�erentials on X . From the dis
ussion above I 
on
lude that they are physi
ally signifyingthe presen
e of instantons, and the number of fermioni
 insertions 
ounts the dimension oftheir moduli spa
e.2
2In the fermionic bc-system, that I will discuss in the next chapter, it will also be necessary to insert "zero-modes" in
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2.2 The Canonical Point of ViewThe Morse a
tion (2.1.9) has an immediate interpretation in terms of geometri
 quantitiesof the target manifold X . The best pla
e to understand this is the 
anoni
al formulation ofthe theory. Reshu�eling the terms in (2.1.9), I 
an read o� the 
lassi
al Hamiltonian in thelarge volume limit3
H∞ = vµ (ipµ)+ψα∂α vµ(iπµ) . (2.2.1)Re
onsidering (2.1.10), an immediate 
hoi
e how to quantize 
onsists in relating the ��eld�-
oordinates with geometri
 quantities in the following way:bosons: fermions:
xµ xµ ψµ dxµ

ipµ ∂µ iπµ ιµ

(2.2.2)The Hamiltonian above and the super
harges Q and Q∗ 
an now be rewritten as
Q = d, Q∗ = ιv , H∞ =Lv = {Q ,Q∗} , (2.2.3)and they have a 
anoni
al a
tion on di�erential forms on X . The geometri
 data satisfythe usual quantization rules [pµ, xν] = −iδνµ, [πµ,ψν] = −iδνµ for the superbra
ket, and inparti
ular

Q = iψµpµ . (2.2.4)In the following I will reprodu
e the deformations des
ribed for the path integral ansatz forthe 
anoni
al formalism of Morse theory. The idea behind this is to see what the spe
trumof the Hamiltonian in the large volume limit looks like and to investigate if there remain wellde�ned exited states in this limit. I will again start with the a
tion (2.1.1) before takingthe large volume limit and the target manifold (X ,λg ), endowed with an inner produ
t ondi�erential forms η,χ ∈Ω
•(X )

〈η,χ〉 :=
∫

X
(⋆ η̄)∧χ . (2.2.5)The bar denotes 
omplex 
onjugation, if ne
essary, and ⋆ the Hodge operator.4 The Hamil-tonian 
orresponding to the a
tion (2.1.1) with Morse fun
tion f is obtained from the

correlation functions. These do, however, not represent instantons because they are mappings between isomor-

phic representation spaces, cf. section 3.4.1 and section 8.3. On the contrary, instantons relate different vacuum

configurations (they are highest weight vectors of different representations).
3This classical Hamiltonian is not bounded from below. However, in section 2.4, I will derive it from the canonically

quantized Hamiltonian with λ 6= 0 by deforming the spectrum in a specific way, cf. [FLN06]. Thereby one obtains

states which are not in the closure of Ω•
d

(X ) with respect to the L2 norm, but on which one can define an orthog-

onal pairing and whose eigenvalues with respect to the canonically quantized H∞ are positive semidefinit (when

considered perturbatively, c.f. section 2.5). Analogous will be satisfied for the A-model.

4On volume elements ⋆ dxµ1 ∧·· ·dxµk =
p
|g |

(dimRX−k)!
ǫ
µ1···µk
νk+1···νdim X

dxν1 ∧·· ·dxνk and ǫµ1···µdimR X
=+1 for even per-

mutations.
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super
harges
Q =dλ = e−λ f deλ f = d+λ d f ∧ ,

Q† =d†
λ
= eλ f d†e−λ f =

1

λ
d† + ι∇ f ,

(2.2.6)as
H =∆λ =

1

2
{Q ,Q†} =

1

2

(
λ−1

∆+λ‖d f ‖2 +K f

)
, (2.2.7)where, ‖d f ‖2 = ι∇ f d f , K f = L∇ f +L

†
∇ f
, L

†
∇ f

= {d†,d f } and ∆ = {d,d†}. Conjugation † isde�ned with respe
t to the inner produ
t. Let me emphasize, that up to now CPT is notbroken and the two super
harges are indeed 
onjugate. However, in the large volume limitCPT will be violated and this makes the di�eren
e between the dagger and the star, forinstan
e for the super
harge in (2.2.3).
2.2.1 On the CohomologyAs I explained in the introdu
tion and in appendix A, the topologi
al states are in the
ohomology of the super
harge Q. Under 
ertain 
onditions on X , that I will 
on
entrate onin this se
tion, the 
ohomology of Q is isomorphi
 to the kernel of the Hamiltonian.The super
harges above are obtained by a similarity transformation of d and d†, and I
an hen
e 
arry over the results on the de Rham di�erential to the more general situation inMorse theory, in parti
ular that H•

dλ
(X ) ≃ H•

d
(X ). If X is a real manifold whi
h is moreover
ompa
t, oriented and without boundary, there exists a unique Hodge de
omposition

Ω
k
dλ

(X )= dλΩ
k−1
dλ

(X )⊕d†
λ
Ω

k+1
dλ

(X )⊕Ω
k
∆λ

(X ) , (2.2.8)where Ω
k
∆λ

(X ) denotes the harmoni
 forms on X with respe
t to H =∆λ [Nak03℄. If su
h ade
omposition exists and moreover an inner produ
t like (2.2.5) one 
an show that H•
dλ

(X )≃
Ω

•
∆λ

(X ).5 Thus, in order to identify the 
ohomology of the super
harge with the groundstates of the Hamiltonian it would be sensible to invoke that whenever X is real, it shouldalso be 
ompa
t, oriented and without boundary.If X is a 
ompa
t Kähler manifold there exist unique, orthogonal Hodge de
ompositionsfor the Dolbeault derivatives ∂λ and ∂̄λ. Noti
e that in this 
ase dλ = ∂λ+ ∂̄λ and similar forthe 
onjugate. Sin
e ∆dλ
= 2∆∂λ = 2∆∂̄λ

[Nak03℄, one �nds that H
p,q

∂λ
(X ) ≃Ω

p,q

∆dλ

(X ) and thesame is true for the 
onjugate di�erential forms. Therefore:
❏ Let X be a 
ompa
t Kähler manifold or, if real, 
ompa
t, oriented and without bound-ary.

5Let ω ∈Ω
•
∆λ

(X ), then 〈ω,∆λω〉 = 0 = ‖dλω‖2 +‖d†
λ
ω‖2 and this proves that a harmonic form is closed under dλ and

d†
λ

. The Hodge decomposition is orthogonal and therefore the harmonic forms are not exact with respect to dλ.
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The next se
tion will 
larify that the isomorphy between the 
ohomology of the super
hargeand the kernel of the Hamiltionian will survive CPT breaking if λ<∞. For λ→∞ this willstill be true at least for X =CP
1 and I will prove this in se
tion 2.4.1.

2.2.2 Implementing CPT Breaking and LocalizationThe transformations I have done on the path integral in se
tion 2.1.1 
an be translated tothe 
anoni
al point of view by 
onsidering 
orrelation fun
tions of topologi
al observablesand states
〈ω, e (tn−t+)H

One (tn−1−tn)H . . .e (t1−t2)H
O1e (t−−t1)H ·χ〉 =

∫

X×X
[⋆ ω̄(x+)]∧χ(x−)

∫

Σ→X : x(t−)=x− , x(t+)=x+
On(tn)∧·· ·∧O1(t1)e−S .

(2.2.9)Sin
e the topologi
al se
tor is supposed to be invariant under subtra
ting the exa
t term
∫x+

x−
d f = f (x+)− f (x)+ f (x)− f (x−) from the a
tion, this must have an e�e
t on the operatorsand states. Expe
tation values of topologi
al observables, 
al
ulated with an Hamiltonianin whi
h CPT is manifestly broken by the additional term, must equal the undeformedexpe
tation values. Therefore, the states and observables in the CPT-broken phase aresubje
t to the following transformations of the physi
al 
ounterparts6

χ 7→ eλ f χ

⋆ ω̄ 7→ e−λ f
⋆ ω̄

O 7→ eλ f
Oe−λ f

and in parti
ular Q 7→ d

Q† 7→ Q∗
λ
= 2ιv +λ−1d†

H 7→ Hλ =Lv + 1
2λ∆

(2.2.10)Let me emphasize that all operators transform in the same way and the mappings aboveare not similarity transformations. Therefore, the new Hamiltonian is not self-
onjugate anymore and I rather put a ∗ than a †.One may now allow the transformed Hamiltonian not only to a
t on topologi
al but alsoon dynami
al states. Still, for �nite values of λ, the new Hamiltonian has the same spe
trumas H be
ause the in-states have just gained a phase. In parti
ular, the isomorphy betweenthe super
harge 
ohomology and the ground states is still valid, though the theory is notunitary any more and the in- and out-states are no longer 
onne
ted by an inner produ
t(I will dis
uss the out states in se
tion 2.2.4). The Morse theory with broken CPT andthe one determined by (2.2.7) have the same 
ohomologies with respe
t to the super
harge,sin
e H•
dλ

≃ H•
d
. Moreover, for �nite λ, H•

d
≃Ω

•
∆λ

≃Ω
•
Hλ
, su
h that dimΩ

•
∆λ

= dim Hλ. Thesedimensions are a topologi
al invariants and thus should not be a�e
ted by taking λ→∞.
6The exponent eλ f := eλ( f (x)− f (x−)) for the “ket” and e−λ f = e−λ( f (x)− f (x+)) for the “bra”.
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2.2.3 The Instanton Moduli Space RevisitedA

ording to the 
onsiderations of the last se
tions, the topologi
al states are elements ofthe de Rham 
ohomology of d. In the following I will 
onsider observables ω̂ whi
h 
anbe identi�ed with di�erential forms ω on X , substituting ψµ with dxµ. Integrating out the
onjugate momenta, the quantum me
hani
al Greens fun
tion between two 
riti
al points
x± is

G
(x+,t+)
(x−,t−) [ω̂1 . . .ω̂n] =

∫

M (−,+)
sgn det

(
δ
µ
α

d

dt
−∂αvµ

) ∧

k=1...n

φ∗ v (ωk , tk) . (2.2.11)By φ∗ v (ωk , tk) I denote the push forward of the di�eomorphism (2.1.11), evaluating ω alongthe �ow lines, and I assume that these operators are time ordered.
The Partition Function One of the most famous of su
h Greens fun
tions is the (super-symmetri
) partition fun
tion

Z (T )=
∫

X
δ(x+−x−)δ(ψ+−ψ−)G

(x+,t+)
(x−,t−) [1] =

∑

c∈A

sgn det
(
−H

µ
ν (xc )

)
. (2.2.12)The set A en
ompasses the 
riti
al points, T = t+− t− is the time period and the periodi
boundary 
onditions 
ause lo
alization on the �ow lines that are loops, i.e. the va
uum
on�gurations. The operator d

dt does not 
ontribute to the sign of the determinant be
auseof these boundary 
onditions.7 The supersymmetri
 partition fun
tion 
an also be writtenin terms of the Hamiltonian, using (2.2.9):
Z (T )= str eHT = tr (−)F eHT , (2.2.13)where (−)F gives a minus sign on fermions (forms with odd degree) and plus on bosons(even degree). Sin
e the ex
ited eigenstates of H are always boson-fermion pairs due tosupersymmetry, the partition fun
tion 
ounts the di�eren
e in the number of fermioni
 andbosoni
 ground states Z (T ) = trΩ•
∆λ

(−)F . Thus, if X is su
h that the harmoni
 di�erentialforms are isomorphi
 to the de Rham 
ohomology,
Z (T )=

∑
n

(−)n dimR H n
Qλ

(X ,R) . (2.2.14)A 
areful reader might have obje
tions against this derivation, be
ause it is not obvious howto interpret the tra
e if CPT is broken. However, for �nite values of λ, the in- and out-statesare isomorphi
 and the spe
trum of the Hamiltonian is basi
ally the same, su
h that theequation above remains 
orre
t.
7This is nicely explained in [BBRT91]. Due to periodic boundary conditions one can make an expansion in Fourier

modes xµ(t) =∑
n∈Z x

µ
n eint and the same holds for the other coordinates. For simplicity let X be one dimensional.

The Hessian is diagonal in the tangent basis of flow lines at xc with eigenvalues λc . Hence, in that basis and at xc ,

the sign of the determinant is: sgn det
(∏

n∈Z(−in +λc )
)
. Only the zero mode contributes with a sign for the others

square to a positive number.
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Correlation Functions with Observables To be topologi
al, more general 
orrelationfun
tions in
luding observables have to be zero on Qλ-exa
t observables. Noti
e, that Qλ = dand using Stokes formula this implies the 
ondition
∫

M (−,+)
d φ∗ v (ω, t ) = 0. (2.2.15)This 
an be obtained by demanding that the boundary ∂M (−,+) vanishes. In the followingI will, however, �x another property of X su
h that the integral yields zero.In order to yield non-trivial 
orrelation fun
tions, the observables must have a total formdegree of dim M (−,+). In parti
ular, if the dimension of ∂M (−,+) in the equation abovewas less than the form degree of φ∗ v (ω, t ), the 
orrelation fun
tion would also vanish, andthis is what I am going to enfor
e in the following.First, I have to ensure that ∂M (−,+) is a submanifold su
h that an integration of di�er-ential forms on this spa
e is de�ned. In order to investigate ∂M (−,+), I take the 
losure ofthe des
ending and as
ending manifolds X− and X +. Sin
e X is 
ompa
t these 
losures are
ompa
t. If the following 
ondition holds

❏ The Xα and X α are strati�
ations of X , i.e. X α = ∪β∈A≥α Xβ where A≥α is the set of
riti
al points with index greater or equal ind xα and similar X
α = ∪β∈A≤α X β wherenow A≤α 
ounts lower indi
esthere is a 
anoni
al 
ompa
ti�
ation of the instanton moduli spa
es

M (−,+) =
(
∪α∈A≥− Xα

)⋂(
∪β∈A≤+ X β

)
(2.2.16)and thus their boundaries will be manifolds [Hut02℄.If X is Kähler, the analysis is immediate. All indi
es are even valued, as one has aholomorphi
 and antiholomorphi
 part. The super
harge is Qλ = ∂+ ∂̄ and raises the totalform degree by one. Hen
e, under the 
orrelation fun
tion and after invoking Stokes formula,the di�erential form has degree (dim M (−,+)−1). Be
ause the 
ompa
ti�ed instanton modulispa
e 
an be rewritten as

M (−,+) =
⋃

αi∈A>− , β j∈A<+

M (−,+)×M (−,β j )×M (αi ,β j )×M (β j ,+) , (2.2.17)the boundary must also have even dimension, as it 
onsists of instanton moduli spa
es beingglued together. Therefore, the 
orrelation of an exa
t di�erential form must be zero in this
ase.If X is a real manifold, the situation is more 
ompli
ated and I know of no general argu-ment. Due to that la
k of knowledge I will restri
t to
❏ The manifold X be Kähler.
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2.2.4 The Out-StatesThe in- and out-states are related by a CPT transformation: F
∓
out = CPT ·F±

in
, where +denotes parti
les and − anti-parti
les. Formally, an in-state 
an be written as

ωin =
∫

x(t ): (−∞,0], x(−∞)=x−, x(0)=x

∏

i

O (ti ) e−Sλ , (2.2.18)where the boundary 
ondition x− de�nes a va
uum 
on�guration, and CPT a
ts by 
onju-gation ω 7→ ⋆ ω̄ and time reversal. Thus, if the theory were unitary the out states wouldbe of the form ωout =⋆ω̄in. Under that 
ir
umstan
es, there exists an hermitian inner pro-du
t and the out-states 
an be identi�ed with the in-states. However, in the 
ase under
onsideration and due to the additional term, CPT a
ts non-trivially on the Lagrangian
Lλ(t ) = L(t )−λ dt f (x(t )), (2.1.8),

Lλ(t ) 7→ Lλ(−t )+2λ
d

dt
f (x(−t )) , (2.2.19)and the extra term indi
ates that the theory is not unitary.8When de
omposing the thus transformed Lagrangian in analogy with se
tion 2.2.2, theout-states obtain a phase fa
tor e−2λ f and thus

ωout = e−2λ f
⋆ ω̄in . (2.2.20)For �nite values of λ, the out-states are still isomorphi
 to the in-states, but in the limit

λ→∞, this is not 
anoni
ally valid.
The In-States in the Vicinity of a Critical PointIn se
tion 2.1.2 I wrote that the states are lo
alized around the 
riti
al points of f . This isde�nitely the 
ase for the topologi
al states. To see this I 
onsider (2.2.7) and undertake thesemi
lassi
al analysis in analogy to Witten [Wit82℄.Taking into a

ount that the 
onjugate derivative in real 
oordinates and for an evendimensional manifold X is d† =−ιµ∇µ, the operator K f 
an be written in a simpler way:

H =
1

2

(
λ−1

∆+λ‖d f ‖2 +Hν
µ(x) [dxµ, ιν]

)
. (2.2.21)If λ→∞, the potential energy will grow, and this enfor
es the low energy states to lo
alizearound the 
riti
al points. In this 
ase it is 
ustomary to undertake a Taylor expansion

8However, notice that for a vacuum configuration the extra term yields zero and CPT invariance is not affected.
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around a 
riti
al point in order to study the low energy spe
trum.9 Thus, I 
hoose lo
al 
o-ordinates x (Riemann normal 
oordinates respe
tively Kähler normal 
oordinates [HIN02℄),in whi
h the 
riti
al point xc is at the origin xc = 0, the metri
 is approximately Eu
lidean,i.e. gµν =δµν and ∂λgµν(0) = 0, and the Hessian is diagonal, H
µ
ν (0) = δ

µ
ν κµ. The Hamiltonian
an now be approximated as

2H (pert) =
∑
µ

(
−λ−1

(
∂µ

)2 +λ(κµxµ)2 +κµ[dxµ, ιµ]
)
+O(x3)

≃
∑
µ

(
2λ−1H

µ

bos
−κµ(−)Fµ

)
.

(2.2.22)The operator Fµ equals one if the di�erential form 
ontains dxµ and zero, else. The bosoni
part is just a sum over independent harmoni
 os
illators, and sin
e [H
µ

bos
, (−)Fµ ] = 0 theseoperators 
an be diagonalized simultaneously. From the eigenvalues

E =
∑
µ

(
|κµ|(2nµ+1)−κµ(−)Fµ

)
, nµ ∈N∪ {0} (2.2.23)one 
an 
on
lude that the va
uum 
on�gurations are unique and the form degree must equalthe index of xc . Namely, κµ 6= 0 sin
e f is Morse, and nµ = 0 for va
uum 
on�gurations.Let me 
on
lude with some remarks. Firstly, for the 
lass of target manifolds under
onsideration, the perturbative ground states equal the a
tual ground states. The reason isas follows: In general, the perturbative ground states might get lifted to massive states dueto nonperturbative e�e
ts. However, there is a pairing of massive fermions and bosons due tosupersymmetry. On a Kähler manifold, all ground states have an even form degree and a liftto an ex
ited state would yield bosons, only. This does not 
onform with supersymmetry,su
h that on a Kähler manifold the number of 
riti
al points must equal the number ofground states. This does not mean that nonperturbative e�e
ts 
an not be observed onex
ited states.Further, I would like to emphasize that due to the s
aling of the metri
 with λ, thereremain �nite energy 
ontributions in the large volume limit. These ex
ited states do alsolo
alize on the as
ending and des
ending manifolds. Namely, the in-states take the form(2.2.18), and when λ 7→∞ they lo
alize on the gradient traje
tories. Sin
e x(−∞) must be a

9Notice, however, that such an expansion destroys the kinematics of the theory. Further, it demands that a partic-

ular vacuum configuration is selected around which the Hamiltonian is expanded. This might promote the idea

that it would be necessary to distinguish a “physical” from “other” vacua, while further it destroys the topological

properties of the theory such as instantons. Behind these drawbacks, Taylor approximating around a fixed back-

ground has, is hidden the idea that for a theory on curved target spaces there should be distinguished a “free”

from an “interacting” part in the Hamiltonian respectively the Lagrangian, just as is common in quantum theories

on flat spaces. The careful reader will find that the approach of Frenkel, Losev and Nekrasov [FLN06], though it

heavily relies on a proposal on the nonperturbative states and makes use of the Taylor ansatz in order to obtain

the perturbative states, tries to overcome this rationality, cf. section 2.4. At least the nontrivial topolology will be

preserved.

18




riti
al point xc , these states have their support on the des
ending manifolds Xc . Therefore,the in-states are asso
iated to the des
ending manifolds that 
over X . By the same argumentthe ex
ited out-states are supported on the as
ending manifolds.The ground states, extended by those ex
ited states, will be fo
used on in the following.Before, I will brie�y summarize the 
onstraints on X that I have obtained.
2.3 Summary of the Constraints on XIn the last two se
tions, I have transformed a general Morse theory in su
h a way that themain ingredients whi
h make a topologi
al theory integrable are manifest: breaking of CPTinvarian
e and lo
alization. I have dis
ussed the relation between the 
anoni
al and pathintegral point of view. I had to put several 
onstraints on the target manifold X in order toa
hieve that there exists a topologi
al se
tor. Now I would like to add a last 
onstraint.I always assumed that f is Morse and derived a ve
tor �eld v =∇ f as a gradient of thisfun
tion. In the situation of the A-model it will be important to reverse the logi
 and startfrom a given ve
tor �eld v . For the transformations (2.2.10), the existen
e of su
h a potentialis essential. It is in general not guaranteed that v 
an be expressed in terms of a gradient of aunique potential f . However, if X is a 
ompa
t, simply 
onne
ted, symple
ti
 manifold and
v is a symple
tomorphism, one 
an invoke de Rham duality H 1(X ) ≃ H1(X ) = 0 and 
on
ludethat ω := ιv g is an exa
t one-form ω= d f . Consequently, for every ve
tor �eld v there existsa unique and single-valued fun
tion f su
h that v =∇ f .

❏ Let X be 
ompa
t and simply 
onne
ted.I have been as unrestri
tive as possible and at the end of my dis
ussions it appears thatI had to put the same 
onstraints as those used by Frenkel, Losev and Nekrasov [FLN06℄.Here is the summary of the 
onditions:
➀ The target manifold X is a 
ompa
t, simply 
onne
ted, oriented Kähler manifold withEu
lidean metri
 λg .
➁ There is a Morse fun
tion f : M →R su
h that M has a Bialyni
ki-Birula de
ompositionby means of the des
ending and as
ending manifolds.
➂ The des
ending and as
ending manifolds are Morse-Smale transversal.
➃ The des
ending and as
ending manifolds are strati�
ations of X .The main side-e�e
t of the transformations is that the theory is no longer unitary andtherefore the out- and in-states are not related by an inner produ
t. The in-states aresupported on the des
ending manifolds Xc and for the va
uum states I used the argumentof [Wit82℄ in order to see that their form degree equals the index of the �xed point xc .
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2.4 Morse Theory on X =CP
1In this se
tion I am going to review the toy model 
onsidered in [FLN06℄. Many features ofthe Morse theory underlying the topologi
al A-model 
an already be studied by this example.The most important aspe
t will be that the Hamiltonian is not diagonalizable due to theex
ited states.The toy model is de�ned on X =CP

1 with inhomogeneous 
oordinates z, z̄, endowed withthe Fubini-Study metri
 λg =λ dz⊗dz̄
(1+|z|2)2 and a Morse fun
tion f = 1

4
|z|2−1
|z|2+1

. I do further assumethat the topology of CP1 is the Zariski topology. The ve
tor �eld asso
iated with the Morsefun
tion is a generator of the C
× symmetry of X , v = z∂z + z̄∂z̄ .10 It has �xed points {0,∞}and the 
orresponding des
ending manifolds are obtained from the �ow equation dz(t )

dt =
ζ[z(t )], ζ= z∂z . The point {0} is repulsive with ind(0) = 0 and has an asso
iated des
endingmanifold X0 =C0, where C0 =CP

1\{∞}. The other �xed point {∞} is attra
tive with ind(∞) = 2and des
ending manifold C∞ = {∞}. The Hamiltonian before the transformations reads
H =−

2

λ
(1+|z|2)2∂z∂z̄ +

λ

2

|z|2

(1+|z|2)2
+

1−|z|2

1+|z|2
(Fz +Fz̄ −1). (2.4.1)The rationale behind the work of Frenkel, Losev and Nekrasov [FLN06℄ is now as follows.It is not possible to derive the spe
trum of the Hamiltonian H . Therefore, one may use thetri
k to break CPT invarian
e (H 7→ Hλ) and move to the large volume limit λ→∞. TheHamiltonian will then be the Lie derivative in dire
tion of the ve
tor �eld v , 
f. (2.2.10). Theadvantage is that this is a linear operator whi
h is better tra
table. However, if this operatoris 
onsidered in its own right and independent from the physi
al Hamiltonian, it is not 
learwhat the spe
trum looks like. Firstly, sin
e H∞ =Lv is not bounded from below, one mightget states with negative energy Eigenvalues. Se
ondly, it is an operator on di�erential formson CP

1 but it is not obvious what kind of di�erential forms should be allowed. If one allowedonly smooth di�erential forms, due to the shape of the ve
tor �eld v this would restri
t theEigenve
tors of Lv to the spa
e of 
onstant di�erential forms and these have Eigenvalue zero.They would only 
over the topologi
al se
tor but not the dynami
al. In order to over
omethese di�
ulties, Frenkel et al. go ba
k to the physi
al Hamiltonian H and 
onsider itsapproximation as an harmoni
 os
illator (2.2.22) in the 
harts around the 
riti
al points of
v . It turns out that the thus obtained eigenstates survive the large volume limit and be
omeeigenstates of Lv with support on the des
ending manifolds. This is, however, only theperturbative spe
trum and Frenkel et al. have to invoke a hypothesis on how to obtain thenonperturbative states, whi
h I will explain at the end of this se
tion.11
10The Lie algebra of C× is generated by v = z∂z + z̄∂z̄ and u = i(z∂z − z̄∂z̄ ). The group elements are eφv and eφu with

φ ∈R.
11In their publication, Frenkel et al. [FLN06, pg. 7] claim that their approach should be viewed as an alternative to the

usual Gaussian perturbation theory. Their method, they say, captures the nontrivial topology (and perhaps even
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Below, I will derive the low energy states lo
ally around the 
riti
al points in the 
harts C0and C∞ :=CP
1 \ {0}. In the large volume limit, their supports turn out to be the des
endingmanifolds. As already dis
ussed in se
tion 2.2.4, the perturbatively obtained ground statesare the exa
t ground states for the global theory.In order to treat the situation in the 
harts around {0} and {∞} at the same time, I introdu
ea 
onstant k ∈ {±1} that distinguishes if the the �xed point is attra
tive or repulsive. Therespe
tive Morse potential and its gradient are v = k(z∂z + z̄∂z̄ ), f = 1

2
k |z|2 for both 
harts,where k = +1 simulates the �xed point {0} and k = −1 the �xed point {∞}. Noti
e that Inegle
ted the 
onstant in the Taylor expansion of f be
ause it is irrelevant for the analysisof the spe
trum of the Hamiltonian, the Morse potential does only enter the Hamiltonian interms of ∇ f . The 
oordinate z is already a Kähler normal 
oordinate in a neighborhood of

z = 0, g (z) = 1+O(|z|2), and the Hamiltonian is perturbatively given by (2.2.22)
H (pert) =−

2

λ
∂z∂z̄ +

λ

2
k2|z|2 +k(Fz +Fz̄ −1). (2.4.2)The eigenfun
tions are the Laguerre Polynomials

Ψn,m =
(
π(λk)(n+m−1)n!m!

)− 1
2 e

1
2
λ|k |zz̄∂m

z ∂n
z̄ e−λ|k |zz̄dzp ∧dzq , (2.4.3)with Eigenvalues En.m,p,q = n +m +1+k(p +q −1) and n,m ∈N∪ {0}, p, q ∈ {0,1}.When I apply the transformations (2.2.10) and (2.2.20), the sign of k matters. In analogywith [FLN06℄ I start with k = 1, i.e. {0} is repulsive. The in- and out-states of the transformedtheory are now

Ψ
(in,λ)
n,m =

1

λn+m
e−λzz̄ ∂m

z ∂n
z̄ e−λzz̄ ,

Ψ
(out,λ)
n,m =

λ

2π n!m!
∂n

z ∂
m
z̄ e−λzz̄ i

2
dz ∧dz̄ .

(2.4.4)Whith the normalization above, the limit λ→∞ makes sense and the resulting states willhave the same Eigenvalues as the original ones.If k =−1 and {0} is attra
tive, the r�le of the in- and out-states are ex
hanged and hen
e,the in-state for an attra
tive �xed point is just the out-state above. Taking the large volumelimit, the in-states be
ome polynomials in z and z̄. The out-states are fun
tionals on the in-states, and a partial integration makes transparent that the exponential is a representation
the geometry) of the configuration space. Using the harmonic oscillator approximation, they, however, do rely on

the Gaussian approximation and on an hypothesis about the nonperturbative state spaces. Although this is a slight

drawback, I still find their attempt and results of great importance, in particular concerning the question of how to

quantize quantum field theories on curved manifolds without destroying their kinematics and/or their topological

properties such as instantons or symmetries between different vacuum configurations. By the Gaussian approxi-

mation, an interacting part is distinguished from a free part (leading to a linear equation of motion) of the theory. I

consider it a necessary question to ask, if it makes sense at all, to make such a distinction in a quantum field theory

on curved manifolds.
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of the Dira
 distribution. Therefore, when λ→∞,
Ψ

(in,λ)
n,m → zn z̄m ,

Ψ
(out,λ)
n,m →

1

n!m!
∂n

z ∂
m
z̄ δ(2)(z, z̄)

i

2
dz ∧dz̄ .

(2.4.5)The perturbative situation on X =CP
1 is now as follows: On the des
ending manifold C0,the in-states are given by

H0 =F0 ⊗F̄0 , F0 =C[[z]]⊗∧[[dz]] ·1|C0
, ∆0 = 1|C0

(2.4.6)and ∆0 is the va
uum 
on�guration. The expression C[[·]] denotes a power series and ∧the exterior produ
t. The operators ∂z and ιz annihilate the va
uum 1|C0
. The in-statesasso
iated with the des
ending manifold {∞} are elements of H∞ =F∞⊗F̄∞ with

H∞ =C[[∂ω,∂ω̄]]⊗∧[[ιω, ιω̄]] ·∆∞ , ∆∞ =
i

2
δ2(ω,ω̄) dω∧dω̄ . (2.4.7)The lo
al 
oordinate ω belongs to the 
hart C∞ and i

2δ
(2)(ω,ω̄) dω∧dω̄ is annihilated by ωand dω.For the out-states, the r�les of the state spa
es are inter
hanged. The out-states at {0} arethe δ-distributions and take the form of the in-states at {∞}. They lo
alize on the as
endingmanifold X 0 = {0}. The out states at {∞} lo
alize on the as
ending manifold X ∞ = C∞ andare given by polynomials. Moreover, there exist well de�ned pairings between the in- andout-states at the 
riti
al points. Indeed, the integral

∫

Xc

Ψ
(out,∞)
c ∧Ψ

(in,∞)
c , c ∈ {0,∞} (2.4.8)yields a produ
t of Krone
ker symbols and thus has a �nite value, whereby Ψ

(·,∞)
c denotesan in- or out-state in the large volume limit on the des
ending manifold Xc , respe
tivelyas
ending manifold X c .The perturbative state spa
es above motivated Frenkel et al. to make an assumption aboutthe nonperturbative state spa
es, [FLN06℄.

❏ Frenkel, Losev and Nekrasov 
onje
ture that the nonperturbative, low energy statesare obtained by extending the perturbative states, as obtained by the Taylor approxi-mation, as distributions on CP
1.In parti
ular, this implies work on the polynomials. Their proposal 
an be motivated bythree observations. Firstly, the state spa
e around {∞} 
an immediately be 
onsidered asa spa
e of distributions de�ned on CP

1. From this point of view it would make sense toput the other state spa
e on an equal footing. Se
ondly, the perturbative states obtainedabove are Eigenstates of the Hamiltonian H∞ =Lv , 
f. eqn. (2.2.10), when restri
ted as anoperator to the respe
tive 
harts on whi
h the state spa
es live. This Hamiltonian is a linear
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operator whi
h only indire
tly depends on the metri
 by means of the 
ondition that thegradient ve
tor �eld is a symple
tomorphism. Therefore, its Taylor approximation around ava
uum 
on�guration simply equals its restri
tion to the 
hart of this point. This logi
 
an bereversed, the �perturbative� Hamiltonian in a 
hart 
an be extended to the full Hamiltonianwhen its domain is extended to CP
1. Therefore, one might assume that in an analogous wayone obtaines the nonperturbative states from the perturbative ones by also extending theirdomain to CP

1. And lastly, it would be ni
e to extend the de�nition of (2.4.8) to CP
1.The 
onsequen
e of the 
onje
ture above is that the �globalized� polynomials will be thesour
e for the Hamiltonian being non-diagonalizable. This will be the subje
t of the followingse
tion.

2.4.1 Polynomial Distributions on CP
1Denote by D⊗Λ

a,b the spa
e of �test forms� on CP
1, whi
h is the spa
e of smooth di�erentialforms on CP

1 with form degree (a,b) and 
ompa
t support. In this se
tion, I will extend thepolynomial zν z̄µ as a distribution on test fun
tions for arbitrary ν,µ ∈C, ν−µ ∈Z, and similaras distribution forms dual to D⊗Λ
a,b. In parti
ular, the va
uum state 1C0


an immediatelybe generalized by de�ning it to be the distribution form ∆0 a
ting on a di�erential form
η ∈D⊗Λ

1,1 a

ording to
∆0(η) =

∫

C0

η . (2.4.9)In order to work out the extension for general polynomials, I will �rstly 
on
entrate onpolynomials on C. If the exponents n and m are allowed to be negative integers, they mayhave poles at z = 0 and it will be ne
essary to regularize them and to generalize them asdistributions on C.This situation will appear for CP
1 in the 
hart C∞ around {∞}, and I will generalize theformer dis
ussion to this 
ase. Thereby, the polynomials with support in C0 will be extendedas distributions on CP

1 in the sense de�ned for the polynomials on C.Most results of this se
tion are obtained by using the de�nitions of Gel'fand and Shilov[GS64℄. The extension to CP
1 is handmade and the main results of this se
tion (2.4.29)equals that of [FLN06, pg. 55℄, though I 
hose a di�erent approa
h.

The Case CLet d2z := i
2

dz ∧dz̄ and denote by ∫ an integration over C with this measure. Let further
ν, µ ∈C, ν−µ ∈Z and D be the fun
tions with 
ompa
t support on C. The polynomial in

∫
zνz̄µφ , φ ∈D , n := ν−µ ∈Z (2.4.10)
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is analyti
 in ν, µ and lo
ally integrable if the real part of s := ν+µ is ℜ(s) >−2, su
h that theintegral above de�nes a distribution on test fun
tions φ. One 
an understand this, writingthe expression in angular 
oordinates
∫

zν z̄µφ=
∫∞

0
r s+1

(∫2π

0
φ(r e iα,r e−iα) e inαdα

)
dr . (2.4.11)If ℜ(s) = −2 there might be a logarithmi
 pole and lo
al integrability fails in a subset 
on-taining the origin. For integer values less than −2 there will be poles as explained below. Intwo steps I will generalize (2.4.10) as a distribution for more general values of ν and µ.

Analytic Continuation to ℜ(s) > −2−m , m ∈ N, s ∉ Z Firstly, it is possible to 
ontinue(2.4.10) analyti
ally to ℜ(s)>−2−m, s ∉Z. Suppose that ℜ(s) >−2 and add 0 in a way su
hthat later the singularities for ℜ(s) >−2−m will be extra
ted:
∫

zν z̄µφ=
∫

|z|≤1
zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l

)

+
∫

|z|>1
zν z̄µφ+2π

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !

δl−k ,n

k + l + s +2
,

(2.4.12)where φ(k ,l)(z, z̄) := ∂k
z∂

l
z̄φ(z, z̄). The last term is minus the insertion under the integral,integrated over in polar 
oordinates. The thus obtained equation above is analyti
 in ν, µup to simple singularities at s =−l −k−2 ∧ n = l −k or equivalently at ν=−k−1 ∧ µ=−l −1.Hen
e, it 
an be analyti
ally 
ontinued. If further m is su
h that −m−2 <ℜ(s) <−m−1, one
an simplify this expression:

∫
zν z̄µφ=

∫
zνz̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l

)
. (2.4.13)The point is, that in this 
ase, the last term in (2.4.12) 
an be expressed as

−
∫

|z|>1
zνz̄µ

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l , (2.4.14)sin
e k + l + s +2 < 0. In detail that 
an be seen in polar 
oordinates. It is now reasonableto de�ne (2.4.10) as equation (2.4.13) if ℜ(s) < −2 ∧ s ∉ Z, as one 
an always 
hoose m asabove.

Analytic Continuation to s ∈Z<−1 The transition to s ∈Z<−1 is done by subtra
ting thesingular term, say at s = −m − 1, and taking the limit s → −m − 1 with �xed n = l − k orequivalently one 
an take the limit ν→−k −1 ∧ µ→−l −1. From (2.4.12) one 
an see, that
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this pole 
orresponds to k + l = m −1, whi
h is the highest order term in
∫

z−k−1z̄−l−1φ : = lim
ν→−k −1

µ→−l −1

∫(
zν z̄µ−2π

(−)k+l

k !l !

δ(k ,l)(z, z̄)

m +1+ s

)
φ(z, z̄)

=
∫

z−k−1z̄−l−1

(
φ(z, z̄)−

m−2∑

a+b=0

φ(a,b)(0,0)

a!b!
za z̄b

−
∑

a+b=m−1

φ(a,b)(0,0)

a!b!
za z̄bθ(1−|z|)

)
.

(2.4.15)

This equation follows from (2.4.13). Firstly, one splits up the integral into an integration over
|z| ≤ 1 and one over its 
omplement. The term with polynomial degree a +b = m −1 underthe integral over |z| > 1 
an be extra
ted and 
an
els to zero with the term subtra
ted in in�rst line of (2.4.15). Therefore, the theta-fun
tion appears, whereby θ(x) = 1 if x ≥ 0, x ∈ Rand 0 otherwise.
Differentiating It is important to noti
e that due to the appearan
e of the theta fun
tionin the 
ase s ∈Z<−1, di�erentiating is not a trivial task. Using the property of the derivativeon distributions one obtains

∫(
∂z z−k−1z̄−l−1

)
φ=

∫(
(−k −1)z−k−2z̄−l−1 −

2π(−)k+l

l !(k +1)!
δ(k+1,l)(z, z̄)

)
φ , (2.4.16)and similar for ∂z̄ .

The Case CP
1The polynomials (2.4.10) on C with positive exponents equal to the polynomial states (2.4.6)lo
alized on C0. They are well de�ned on this 
hart, however not around {∞}. In order toobtain the nonperturbative states by extending them as distributions on CP

1, I will make twosteps. Gri�ths and Harris [GH78, pg. 373℄ suggest that distributions on general manifoldsshould be de�ned lo
ally in 
harts. Therefore, I will �rstly de�ne the polynomials as distribu-tions on test fun
tions D0/∞ with 
ompa
t support in the 
harts C0/∞ of CP1, whereby theira
tion on D∞ is of parti
ular importan
e. Under this pro
edure, the generalized polynomials
an be viewed as a dire
t sum of fun
tionals, ea
h of wi
h is de�ned as a distribution on testfun
tions D∞ and D0 respe
tively, i.e. H
(in) ext .−→ D

∗
0 ⊕D

∗
∞. Se
ondly, by eqn. (2.4.31) I willde�ne a pairing of out- and in-states, following Frenkel et al. [FLN06℄. The nonperturbativestates will thereby be de�ned on smooth di�erential forms on CP

1, whi
h are also test formssin
e CP
1 is 
ompa
t.Let φ be an element in D0 ⊗Λ

a,b with support on the 
ompa
t subset {0}. Consequently,
∫

zν z̄µφ=
∫

|z|≤1
zν z̄µφ+

∫

|z|>1
zνz̄µφ ,

∫
· =

∫

CP1
· , (2.4.17)
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is well de�ned.12 Using the analysis for X = C, the se
ond term on the right hand side 
anfurther be given a meaning on test fun
tions with support on the 
ompa
t subset {∞} ∈CP
1.Rewriting z =ω−1 in 
oordinates on C

×, the integral above yields ∫
zνz̄µφ=

∫
|z|≤ǫ zν z̄µφ(z, z̄)+

∫
|ω|<ǫ−1 ω−ν−2ω̄−µ−2φ(ω−1,ω̄−1) and by means of (2.4.15) this expression 
an now be de�nedon φ ∈ D∞⊗Λ

a,b. Setting w.l.o.g. ǫ = 1, the polynomial distribution a
ting on D0/∞ splitsinto a dire
t sum
∫

zν z̄µφ :=
∫

D
ω−ν−2ω̄−µ−2φ̂(ω,ω̄)+

∫

D
zµ z̄νφ(z, z̄) , (2.4.18)whereby φ̂(ω,ω̄) :=φ(ω−1,ω̄−1) and D is the unit disk around {0}. The �rst integral amountsto zero if φ ∈D0 while this is true for the se
ond integral if φ ∈D∞.

Differential Operators In order to analyze the a
tion of di�erential operators on the thusgeneralized states, I will now introdu
e another notation in a

ordan
e with Frenkel, Losevand Nekrasov [FLN06℄. Thus, denote every polynomial distribution (form) of the type(2.4.18) with n,m ∈N by
|n,m, p, q〉0 ∈ (D∗

0 ⊕D
∗
∞)⊗Λ

p,q , p, q ∈ {0,1} ,

|n,m, p, q〉0 [φ] :=
{ ∫

D ω−ν−2ω̄−µ−2φ̂(ω,ω̄)+
∫

D zµ z̄νφ(z, z̄) ,

0 if n,m < 0, p, q > 1
,

(2.4.19)and similarly the in-states build from δ distributions by
|n,m, p, q〉∞ [φ̂] :=

i

2

(−)m+n

n!m!

∫
δ(m,n)(ω,ω̄) dωp ∧dω̄q ∧ φ̂ . (2.4.20)I 
an now generalize the notion of an exterior derivation on su
h distribution forms bymeans of

∂|n,m, p, q〉0/∞ [φ] := (−)p+q+1|n,m, p, q〉0/∞ [∂φ] . (2.4.21)In order to 
al
ulate the derivative of (2.4.19) for the 
ase φ ∈D∞, I have to apply ∂= dω∧∂ω:
∂|n,m, p, q〉0 [φ] = (−)p+q+1|n,m, p, q〉0 [∂ωφ̂(ω,ω̄) dωa+1 ∧dω̄b ]

= (−)p+q i

2

∫(
∂ωω

−n−2p−2a ω̄−m−2q−2b
)

×dωp ∧dω̄q ∧ φ̂(ω,ω̄) dωa+1 ∧dω̄b .

(2.4.22)Without loss of generality, I set p = a = 0 and keep the other degrees of freedom
∂|n,m, p, q〉0 [φ] =

i

2

∫(
∂ωω

−nω̄−m−2q−2b
)
dω∧dω̄q ∧ φ̂

=
2π(−)n+m−1

n!(m +2q +2b −1)!

∫
δ(n,m+2b+2q−1)(ω,ω̄)dω∧dω̄q ∧ φ̂

−n|n −1,m, p +1, q〉0 [φ] .

(2.4.23)

12For convenience I shift the test functions always to the right, also if they represent out-states. This will not have an

effect on the results of the following sections.
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For φ ∈D0 one obtains the �rst term on the right but with another sign. To summarize,
∂|n,m, p, q〉0 =n|n −1,m, p +1, q〉0

∣∣
D0

−n|n −1,m, p +1, q〉0

∣∣
D∞

+2π|n,m +2q −1, p +1, q〉∞ .
(2.4.24)Cal
ulating the exterior derivative of (2.4.20) is not so te
hni
al, it turns out to be

∂|n,m, p, q〉∞ =−(n +1)|n +1,m, p +1, q〉∞ (2.4.25)and the prefa
tor 
omes from the normalization of the state.Another important di�erential operator is the interior produ
t ιζ with some ve
tor �eld
ζ= z∂z (in lo
al 
oordinates on C0). The point is, that the Hamiltonian is given by the Liederivative on su
h polynomial distribution forms. Again, I make use of

ιζ|n,m, p, q〉0 [φ] := (−)p+q+1 |n,m, p, q〉0 [ιζφ] . (2.4.26)Sin
e ζ=−ω∂ω in C∞, the a
tion of the interior produ
t is
ιζ|n,m, p, q〉0 =±|n +1,m, p −1, q〉0 , �−� on D∞⊗Λ

(a,b) . (2.4.27)The a
tion on a distribution |n,m, p, q〉∞ is derived analoguousely by means of some partialintegration (again, I �x the non-trivial values p = 1 = a ):
ιζ|n,m, p, q〉∞ [φ̂] = (−)p+q+1 |n,m, p, q〉∞ [−ωφ̂(ω,ω̄) dωa−1 ∧dω̄b ]

=
i

2

(−)q

n!m!

∫
δ(ω,ω̄)dωp ∧dω̄q ∧

(
−n ∂n

ω∂
m
ω̄ φ̂(ω,ω̄)+O (ω)

)
dωa−1 ∧dω̄b

=−|n −1,m, p −1, q〉∞ [φ̂] .

(2.4.28)In the 
al
ulation above I used the fa
t that the delta fun
tion lo
alizes on ω= 0 and thereforethe terms proportional to ω vanish. Now I 
an 
al
ulate the Lie derivative for any of thelo
al test fun
tions
Lζ|n,m, p, q〉0 = (n +p)|n,m, p, q〉0−2π|n +2p −1,m +2q −1, p, q〉∞ ,

Lζ|n,m, p, q〉∞ = (n +1−p)|n,m, p, q〉∞ .
(2.4.29)Thus, due to the extension as distributions, the operators in
luding exterior di�erentialsare in general not diagonal on |n,m, p, q〉0. These states get mixed with states |n,m, p, q〉∞on whi
h the operators have a one-dimensional representation. In parti
ular, the analyti
extension of the ex
ited states to X = CP

1 makes it ne
essary that the spa
es of in-states
an not be 
onsidered independently, rather one has to take a dire
t sum of the extendedstate spa
es H 0 ⊕H ∞.13 Here, the underline shall denote the state spa
es extended asdistributions.
13Notice, that by the proposal of Frenkel et al. on the nonperturbative states, the topological features of the theory are

preserved, in particular all vacuum configurations are taken into account. In section 2.5, I will argue that also the

instantons will be present and geometrically meaningful.
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❏ If H is a perturbative state spa
e related with some des
ending manifold, I will denoteits extension to X as H .In se
tion 2.5, I will further spe
ify the di�eren
e between the unextended and extendedrepresentation spa
es and operators.
The Out-States as Dual States In order to allow an a
tion of the in-states on the out-states, whi
h are not all test fun
tions, one has to de�ne an adequate pairing. Thereby, thepolynomial states will gain an a
tion on smooth di�erential forms on CP

1 while the splitting(2.4.18) will be preserved.As explained in se
tion 2.4, up to some normalization fa
tor, the out-states are de�ned bythe right hand sides of (2.4.19) with the r�le of the in-states ex
hanged [FLN06℄
∞〈n,m, p, q |[φ]=

i

2

{ ∫
D z−n−2 z̄−m−2 dzp ∧dz̄q ∧φ+

∫
D ωnω̄m dωp ∧dω̄q ∧ φ̂ ,

0 if n,m < 0

0〈n,m, p, q | =
i

2

(−)m+n

n!m!

∫
δ(m,n)(z, z̄) dzp ∧dz̄q ∧ φ .

(2.4.30)Thus, |n,m, p, q〉0/∞ are test forms if restri
ted to C0, and distribution forms in a neighbor-hood of {∞}, whereas 0/∞〈n,m, p, q | are test forms on C∞ and distributions around {0}. Forthat reason, it makes sense to generalize the pairing for in and out states for distributions,setting [FLN06℄
∫

X
Ψ

(out) ∧Ψ
(in) :=

∫

D
Ψ

(out) ∧Ψ
(in) +

∫

X−D
Ψ

(out) ∧Ψ
(in) . (2.4.31)Assumed that the δ distributions split into a part of value 0 and the distribution, this pairingis �ne on all 
ombinations of nonperturbative states but on ∞〈n,m, p, q |n′,m′, p ′, q ′〉0. It isstill true that no distribution is paired with another distribution, however, the distributionalpolynomials get evaluated on fun
tions on whi
h they are not de�ned. The way out is toset this pairing to zero, whi
h equals the de�nition by Frenkel, Losev and Nekrasov, 
f.[FLN06℄.14 Under these 
ir
umstan
es,

i 〈n,m, p, q |n′,m′, p ′, q ′〉 j = δn,n′δm,m′ ,δp+p′ ,1δq+q ′ ,1δi , j , i , j ∈ {0,∞} . (2.4.32)and the nonperturbative states may a
t on smooth di�erential forms (when expanded in the
harts). A

ording to (2.4.31) the spa
e of distributional polynomial states remains a dire
tsum, 
onsisting of a distribution and a fun
tion. I will denote this property by
H 0 =H0 ⊕H

∗
0 , (2.4.33)

14They define ∞〈n,m,1,1|n′ ,m′,0,0〉0 := PV
(∫

ǫ<|z|<1 zn′−n−2 z̄m′−m−2 +
∫
ǫ′<|ω|<1ω

n−n′
ω̄m−m′)

, whereby

PV ( f (ǫ,ǫ′)) equals the value of f which is independent of ǫ,ǫ′ and w.l.o.g. I chose some values for the form

degrees.
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whereby H
∗
0 means the distributional part a
ting on D∞⊗Λ

a,b by (2.4.15) and on polynomialfun
tions a

ording to the de�nition above, while H0 is the perturbative, unextended partlo
alized on C0 and a
ting on fun
tions on this 
hart. Noti
e that su
h a splitting is notne
essary for the δ distributions whi
h are already globally de�ned on CP
1.

Cohomology of the Supercharge I will now �ll in the missing details for my assertionin se
tion 2.2.2, that the 
ohomology of the super
harge is not a�e
ted by taking λ→∞,and that it still equals the spa
e of ground states.The kernel of Q∞ = ∂+ ∂̄ is generated by {|n,m,1,1〉0/∞, |0,0,0,0〉0}. Among these, thestates |n,m,1,1〉∞, n,m ≥ 1 are in the image of Q∞. For n ≥ 1, one �nds that ∂[ |n,m,0,1〉0+
2π
n
|n − 1,m + 1,1,1〉∞ ] = ±n|n − 1,m,1,1〉0 and similar for the antiholomorphi
 di�erential.Therefore |n,m,1,1〉0, ∀n,m ≥ 0 belongs to the image of the super
harge. Consequently,the 
ohomology of Q∞ is e�e
tively restri
ted to {|0,0,0,0〉0, |0,0,1,1〉∞}, whi
h are just theground states. By a dire
t 
al
ulation one �nds, that the solutions of H∞|n,m, p, q〉0/∞ = 0,

H∞ =Lζ+Lζ̄ equal the kernel of Q∞, whi
h proves the assertion above.
2.5 Interpretation of the ExtensionExtending the states asso
iated with the des
ending manifolds to distributions on X wasthe sour
e for a sort of non-lo
ality. Some state spa
es whi
h formerly were restri
ted tolive in di�erent 
harts, are now intermixed by operators 
ontaining exterior di�erentials.In this se
tion, I will spe
ify between what state spa
es this happens. Moreover, this kindof non-lo
ality 
an only be seen on the ex
ited, non-topologi
al states, and therefore mustbe analyzed as an e�e
t of the broken topologi
al phase. Therefore, 
ertain aspe
ts of thegeometry of the target manifold should be
ome visible. To ta
kle those, I will de
ouplethe intermixing e�e
t in the operators, extra
ting the mathemati
ally responsible parts.My dis
ussion follows Frenkel et al. [FLN06℄, but also in
ludes my own interpretations, inparti
ular that of non-lo
ality as an instanton e�e
t.
Perturbative States and Naive OperatorsPerturbatively, the state spa
es under 
onsideration are asso
iated with the des
ending ma-nifolds and in
lude the part of the low lying spe
trum whi
h has a �nite energy spe
trumin the limit λ → ∞. I will 
all these the perturbative spa
es of states. They seem to beindependent from ea
h other, in that they are lo
ally de�ned on the des
ending manifoldsand do not intermix under the a
tion of observables. This 
hanges for the ex
ited states, assoon as they are extended to X .
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Besides distinguishing the perturbative states from the extended ones, I will further in-trodu
e what I 
all naive operators. They a
t on the extended states as if they were a
tingon the perturbative ones. For instan
e, the naive Hamiltonian is diagonal on all extendedstates, L
(naive)
ζ

|n,m, p, q〉0 = (n +p)|n,m, p, q〉0 ∀ n,m, p, q, whereas the full Hamiltonian 
annow be de
omposed Lζ =L
(naive)
ζ

+ g. I will also de�ne a representation of this Hamiltonianon the perturbative states in the following way. Instead of g, 
onsider the operator δ := g◦e,wherein e denotes the extension H i
e→H i , i ∈ {0,∞}. Consequently, δ a
ts on H i and thefull Hamiltonian 
an be represented on the perturbative states by Lζ+δ.

❏ For the rest of my thesis I will �x the following notation. Let O be an operator a
tingon the perturbative state spa
e H . I will denote the same operator, a
ting on theextended state spa
e H by O = O +gO , wherein really O = O
(naive). For 
onvenien
e Iuse this abuse of notation, it will always be possible to 
on
lude from the 
ontext if Odenotes the operator a
ting on H or O

(naive), a
ting on H .The additional operator g is supposed to make lo
al geometri
 aspe
ts of the target spa
evisible (in 
ontrast to the global, topologi
al invariants), and 
auses that the Hamiltonian isnot redu
ible on all states: non-redu
ibility of the Hamiltonian 
an be viewed as an e�e
t ofthe broken topologi
al phase. More ventured, I am tempted to say that the additional term
an be understood as an e�e
t of target spa
e gravity, sin
e beyond the topologi
al phase,invarian
e under di�eomorphisms is broken down to invarian
e under the isometries of someba
kground metri
.
The Local Geometry behind the Deformation TermIn order to understand what kind of geometry be
omes visible in the deformation operator
δ, I will now dis
uss its proper interpretation as a Grothendie
k-Cousin operator (GCO), 
f.[FLN06, Har67, Kem78, Har70℄.The Hamiltonian Lv represents the a
tion of φv (·, t ), indu
ed on di�erential forms, 
f.(2.1.11). Therefore, the perturbative state spa
es 
an be interpreted as representations ofthe symmetry generated by the gradient ve
tor �eld v = z∂z + z̄∂z̄ asso
iated to the Morsefun
tion. The target manifold X =CP

1 is then
e 
overed by di�erent representation spa
es,ea
h of whi
h is supported on a des
ending (as
ending) manifold.Frenkel et al. [FLN06℄ had the idea to des
ribe those lo
al representations by means ofsheaves on X .15 Let X be endowed with the Zariski topology, then X0 =C0 is an open subsetwhile X∞ = X \ X0 is 
losed. The representation H0 
an now be des
ribed as follows. Thehomogeneous rational fun
tions OX [n]∞ on X that are regular ex
ept for a pole of order n > 0

15For a definition of sheaves and an introduction, cf. [GH78, Har70, Gat02].
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at {∞} form a sheave on CP
1. A

ording to se
tion 2.4.1, I 
an identify

H0 \ {∆0} =
⊕

|n−m|>0, n,m≥0

Γ(X0,OX [n,m]∞) , (2.5.1)whereby OX [n,m]∞ = OX [n]∞⊗ ŌX [m]∞ and Γ(U ,OX [n,m]∞) denotes the se
tions of thosepolynomials, restri
ted to the open subset U ⊂ X .16 In parti
ular, the restri
tion to X0 isinje
tive, and the analysis of se
tion 2.4.1 implies that the sequen
e
0 →

⊕

n,m>0

Γ(X ,OX [n,m]∞) →H0 \ {∆0}
δ→H∞ \ {∆∞} → 0 (2.5.2)is exa
t. It summarizes the extension of the lo
al (irredu
ible) representations to (non-redu
ible but inde
omposable) representations de�ned globally X .It would be ni
e, if not only H0 
ould be related with the theory of sheaves, but also

H∞. Sin
e the support of H∞ is a 
losed set but sheaves are de�ned on open sets, somegeneralization will be ne
essary. This will lead to the theory of lo
al 
ohomology [Har67℄.Let F be a sheaf on X , Z ⊂ X a 
losed set and U ⊂ X an open set su
h that Z ⊂U . Thesupport of a se
tion s ∈ F (U ) := Γ(U ,F ) is {p ∈ U : sp 6= 0}, where sp is the germ of s in thestalk Fp .17 The se
tions of F with support in Z are de�ned to be the subgroup ΓZ (X ,F ) ofse
tions F (U ), whose support is in Z . The se
tions with support on 
losed subsets will be atthe heart of the interpretation of H∞.The term �lo
al 
ohomology� enters the work of Frenkel et al. [FLN06℄ through a pub-li
ation of G. Kempf [Kem78℄, wherein the sequen
e (2.5.2) appears as an example in theintrodu
tion. A huge part of the paper is dedi
ated to an analysis of the following set-ting. Given a topologi
al spa
e X , �ltered by 
losed subsets X = Z0 ⊇ Z1 ⊇ ·· ·Zn ⊃ ; andsupplemented with a sheaf F . Kempf derives an exa
t sequen
e whi
h he 
alls a �globalGrothendie
k-Cousin 
omplex�:
0→ Γ(X ,F )→ H 0

Z0/Z1

δ1→ H 1
Z1/Z2

δ2→ H 2
Z2/Z3

δ3→···H n
Zn

→ 0. (2.5.3)Here, I shortened H i
Zi /Zi+1

(X ,F ) = H i
Zi /Zi+1

, H n
Zn /; = H n

Zn
, and the spa
es H i

Zi /Zi+1
denote (ab-stra
t) 
ohomology groups, asso
iated with the quotient presheaf ΓZi

(X ,F )/ΓZi+1
(X ,F ). Theseare the so-
alled lo
al 
ohomology groups.By 
omparison, for the toy model on X = CP

1 one has F =
⊕

n,m>0 OX [n,m]∞ and the
losed sets X ⊃ {∞} ⊃ ;. Consequently, H∞ \ {∆∞} 
an be identi�ed with the �rst lo
al
ohomology group H 1
∞(X ,F ). This is the mathemati
al answer to the question what sort oflo
al geometry of X gets visible due to the ex
ited states. Be
ause the 
omplex above is
alled Grothendie
k-Cousin 
omplex,

16The sections of Γ(X0,OX [n,m]∞) are polynomials in the inhomogeneous coordinates and thus obey the equiva-

lence relation C
2 \ {0} ∋ ( f , g ) ∼ λ( f , g ), f ∈ C \ {< 0} of the homogeneous coordinates. Therefore, I may take the

direct sum.
17Let {Ui } denote an open covering of X , a stalk Fp of F at p ∈ X is the set of pairs (Ui , si ), p ∈Ui , whereby si ∈ Γ(Ui )

modulo si |Ui ∩U j
= s j |Ui∩U j

. An equivalence class in Fp is called a germ, and I denoted it by sp [Har70, Gat02].
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❏ the operator δ is 
alled the Grothendie
k-Cousin operator (GCO). I will also denotethe operator g in δ = g ◦ e as Grothendie
k-Cousin operator, whi
h I am 
onsideringwill always be evident from the 
ontext.
Non-locality as an Effect of InstantonsThe additional term δ has besides the geometri
 a further physi
al interpretation. It 
ontainsthe nonperturbative e�e
ts due to the presen
e of instantons. Instantons, 
onsidered astunneling solutions, 
an be viewed as non-lo
al �eld 
on�gurations that pro
ure some ofthe stru
ture of the theory as de�ned in the 
hart around the repulsive �xed point {∞} tothe one de�ned in the other 
hart around the attra
tive �xed point {0}. Sin
e there are noanti-instantons this does not apply the other way around. This makes it obvious that onemight 
onsider the following: The Grothendie
k-Cousin operator δ mixes the state spa
e H0with H∞, but not the other way around, and in that sense it mimi
s the instantons.
Mixing of Holomorphic and Antiholomorphic PartsA further spe
iality of the Grothendie
k-Cousin operator is that it mixes the holomorphi
and antiholomorphi
 parts. In parti
ular, it 
ontributes only on states whi
h are not purelyholomorphi
 or antiholomorphi
. From (2.4.29) follows that kerδ= {|n,0, p,0〉0, |0,m,0, q〉0 :

n,m ≥ 0, p, q ∈ {0,1}}. For that reason, as soon as the ex
ited spe
trum is 
onsidered, the the-ory 
an not be divided into an holomorphi
 and antiholomorphi
 �half�. Just as the existen
eof non-diagonalizable operators, this is a typi
al 
hara
teristi
 of logarithmi
 
onformal �eldtheories [DF08℄.
2.6 Generalization to General Target ManifoldsIn the following se
tions I will generalize the dis
ussion to a larger 
lass of manifolds X ,again relying on [FLN06℄. For 
onvenien
e I will restri
t my 
onsiderations to the in-states.Furthermore, I will restri
t to Morse fun
tions with the property that their gradient ve
tor�eld equals v = xa∂a +x ā∂ā, where xa and x ā are lo
al 
oordinates on X .
2.6.1 The Perturbative State SpacesThe perturbative state spa
es lo
alize on the des
ending manifolds, thus I will �rst startwith a generalization of those.Let Xα be a des
ending manifold with 
riti
al point xα whi
h has an index ind(xa ) =
dimCX −nα. By 
oordinates along Xα I understand (holomorphi
) 
oordinates x1, . . . , xnα
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su
h that Xα is the hyperplane de�ned by the zero set of the 
omplementary, transversal
oordinates xnα+1, . . . , xdimCX . In the toy model, there exists one holomorphi
 
oordinate zalong X0 ≃ C and no transversal 
oordinate, whereas X∞ = {∞} is zero dimensional and hasjust a transversal 
oordinate z.Now the perturbative state spa
es 
an be generalized. In the toy model, the va
uumasso
iated with X0 was the 
hara
teristi
 fun
tion in the 
oordinate along X0, whereas theva
uum asso
iated with X∞ was a Dira
 distribution. This 
an be generalized as follows:
❏ A ground state ∆α is a distribution form de�ned by ∫

X ∆α∧η=
∫

Xα
η|Xα

on di�erentialforms η ∈Ωd(X ).Again, in the toy model, the ex
ited states on X0 are polynomials in the 
oordinates along
Xα multiplied with the exterior algebra again along X0. The ex
ited states asso
iated with
X∞ whi
h has only transversal 
oordinates, are polynomials in interior derivatives and simplederivatives along the transversal 
oordinates. This is also 
anoni
ally generalized:

❏ The ex
ited states asso
iated with Xα are given by
(C[[xa]]⊗∧[[dxa]] )a=1,...,nα

⊗ (C[[∂a]]⊗∧[[ιa]] )a=nα+1,...,dimC X ·∆α.
2.6.2 The Grothendieck-Cousin OperatorsIn order to determine the Grothendie
k-Cousin operators for the more general 
ase I will usetwo properties of δ as determined before.The �rst property is that the Grothendie
k-Cousin operator is a mapping between di�erentrepresentation spa
es whi
h are lo
ally de�ned in 
harts of X , and that it appears in anexa
t sequen
e of the kind (2.5.3). This is, however, too general. In the situation of thetoy model, the GCO is a mapping between two state spa
es of relative 
odimension one, i.e.
{∞} ≺C0 = codim({∞},Cc

0) = 1, where the upper
ase c denotes taking the 
losure. In order topreserve this property, one must further 
onstrain X and the sheaf F . I will not arti
ulatethose 
onditions and refer the reader to the publi
ation of [T
h04℄. Under the 
onditionsexplained there and whi
h will always be satis�ed in this theses, X and F are su
h that theGrothendie
k-Cousin operators are mappings between representation spa
es on des
endingmanifolds with relative 
odimension one, (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) = 1. This restri
ts the statespa
es between whi
h Grothendie
k-Cousin operators exist:
❏ The GCOs are mapping between perturbative state spa
es whose des
ending manifoldshave relative 
odimension one.

∃ δi : H i−1
Zi−1/Zi

→ H i
Zi /Zi+1

⇔ (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) . (2.6.1)The se
ond property does not make use of the full geometri
 analysis des
ribed in se
tion2.4.1 and is more heuristi
. The situation of the topologi
al A-model I am going to introdu
e
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in the next 
hapter, will lead to an analysis of an in�nite dimensional manifold. Thus, I donot know how to transfer the results above from its roots. When it 
omes to determine theGCOs, I will rather sear
h after an adequate extension e of the perturbative representationspa
es, su
h that I �nd operators g whi
h have the properties of 
ohomology operators onthe extended 
omplex. Thus, in order to determine the extension, I will make use of thefollowing observation:I have explained that the polynomials, extended as distributions, fall into a dire
t sumof fun
tionals on test fun
tions in 
harts � respe
tively via (2.4.31) this might be used formore general fun
tions (2.4.33) if X is 
ompa
t. The observation I will 
on
entrate on isthat the di�erent fun
tionals, naturally de�ned on the di�erent 
harts of X , all have thesame quantum numbers with respe
t to the naive Hamiltonian, f.i. in (2.4.33), H0 and H
∗
0are degenerate. Therefore, I propose that the analyti
 extension e should be performed su
hthat the lo
al spe
trum in a 
ertain 
hart, for instan
e H0, is enlarged by adding the dire
tsum of the possible missing �dual� states, on whi
h the naive Hamiltonian is degenerate.The mapping g is then a mapping from this dual part onto the lo
al 
ohomology group atthe other 
hart, say around {∞} :

❏ The GCOs a
t non-trivially on the �dual part� of the spe
trum of the naive Hamilto-nian, obtained by an extension of the state spa
e
HXα

e→ H Xα
=HXα

⊕H
∗
Xα

g→HXβ
→ 0, (2.6.2)where Xβ ≺ Xα and HXα

denotes the states on whi
h the symmetries of the theorybe
ome degenerate.Instead of determining the Grothendie
k-Cousin 
omplex from the roots, in the following
hapter I will make use of this heuristi
 re
ipe.
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From the A-Model to Morse Theory 3This 
hapter has again three parts. I will su

essively reprodu
e the situation of the last
hapter for the topologi
al A-model, reformulating it as an in�nite sum of Morse theories ofthe kind just 
onsidered. Thereby, I will obtain its perturbative representation spa
es. Itwill be possible to identify them with representations of 
onformal supersymmetri
 ghosts,whi
h I will further substitute for the A-model. Bosonization of the 
onformal theory willenable me to derive the Grothendie
k-Cousin operators and propose the extension of theperturbative state spa
es. Due to the properties of the Grothendie
k-Cousin operators itis then evident that if the topologi
al A-model is a 
onformal �eld theory, it must be alogarithmi
 
onformal �eld theory beyond its topologi
al se
tor. The main referen
e of this
hapter is the publi
ation of Frenkel et al. [FLN08℄.In the �rst part, I will massage the topologi
al A-model, [Wit88b, Mar05, DVV91℄, intoa �rst order form su
h that in the large volume limit, it yields a δ distribution on theinstantons. The a
tion thus obtained is that of a supersymmetri
 bc-system, and I will 
allit the topologi
al supersymmetri
 bc-system (Tb
).In the se
ond part, 3.2 - 3.6, I will reverse the dire
tion of analysis of [Wit88b℄ and derivethe super quantum me
hani
s asso
iated with the Tb
, as was done by Frenkel et al. [FLN08℄.The result will be a theory that is not yet Morse and demands two further steps to reprodu
ethe situation of the last 
hapter. I will dis
uss how to do that in se
tion 3.2 and afterwardsrestri
t my 
onsiderations to the target manifold X =CP
1, 
f. se
tion 3.3. I will then derivethe perturbative state spa
es asso
iated with the des
ending manifolds 
orresponding to the�xed points {0,∞} ∈ CP

1. They 
an be modeled by some 
onformal supersymmetri
 ghostsystem (CSb
) that I introdu
e in 3.4. In order to formulate the CSb
 on CP
1, it is ne
essaryto implement 
hart transitions. Therefore, I have to further introdu
e the 
hiral de Rham
omplex, invented by Malikov et al. [MSV99℄, 
f. se
tion 3.5.1.That the representation spa
es of the Morse theory behind the Tb
 
an be modeled by a
onformal �eld theory raises the question whether this 
ould be true for the A-model itself.I will only tou
h lightly on that question, pg. 52f, and otherwise assume that the CSb
will simulate all aspe
ts relevant for the perturbative low energy spe
trum of Morse theorybehind the A-model.In the last part, starting with 3.6, I will extend the perturbative representations to the non-perturbative spe
trum and introdu
e the in�nite dimensional analogues of the Grothendie
k-Cousin operators. This analysis is done for the CSb
, and I again assume that it generalizesto the A-model. The most important step will be to bosonize the CSb
. To do that, I will
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use and generalize the methods des
ribed in [FMS86, Fri85, FF91, FF90℄, 
f. 3.6.2. Thiswill enable me to analyze the algebrai
 properties of the representation theory for the per-turbative and nonperturbative states of the Morse theory underlying the A-model. Someparts of that investigation have been published in [VF09℄. My approa
h di�ers from that ofFrenkel et al. [FLN08℄, who relied on a publi
ation of Malikov [Bor01℄. Motivated by a priorwork of Frenkel and Losev [FL07℄, they proposed that the Grothendie
k-Cousin operatoris the zero mode of a parti
ular �eld, whi
h is part of a vertex algebra 
onstituted by theCSb
 after rewriting it in logarithmi
 
oordinates and extending it by additional �eld zeromodes. My approa
h will make use of the bosonized CSb
 and of the method of logarithmi
deformation invented by Fjelstad et al. [FFH+02℄. I will dis
uss the approa
h of Frenkel,Losev and Nekrasov and its relation to the method I have 
hosen in an appendix C.
3.1 Massaging the A-modelThe A-model is a two dimensional �eld theory with an N = 2 (N = (2,2)) worldsheet super-symmetry [Mar05℄, 
f. appendix B.1. I will start with preparing the topologi
al se
tor of thismodel and with the transformation of its integration kernel in the path integral to a deltadistribution. For this purpose, let Σ = CP

1 with lo
al metri
 h = dz ⊗dz̄ and volume form
d2z := i

2 dz∧dz̄, as before. The indi
es µ, ν will denote lo
al 
oordinates σµ : σ1 = t , σ2 =σ on
Σ 
onsidered as a real manifold. The 
omplex 
oordinates are z = t +iσ, z̄ = t −iσ. Further, Iwill need the epsilon symbol ǫz̄z =−ǫzz̄ = 2i, as de�ned by 1

2ωµνdxµ∧dxν =: 1
2ωµνǫ

µν ·d2z. Thetarget manifold X be a simply 
onne
ted, 
onne
ted, 
ompa
t Kähler manifold with metri

λg . I denote its lo
al holomorphi
 
oordinates as xa with small latin letters a = 1, . . . ,dimC Xand similarly the anti-holomorphi
 
oordinates as x ā.The A-model, without auxiliary �elds, has the a
tion

S =
∫

Σ

d2z
{
λgab̄(∂z xa∂z̄ x b̄ +∂z̄ xa∂z x b̄ + iπa Dzψ

b̄ + iπb̄Dz̄ψ
a)−

1

2λ
Rab̄cd̄ πaπb̄ψcψd̄

}
, (3.1.1)where the embedding x is a Grassmann even and ψ a Grassmann odd s
alar on Σ and withvalues in x∗(T 1,0 X ), πa ∈ Γ(Σ,Ω1,0(Σ)⊗ x∗(Ω1,0(X ))) is Grassmann odd and similar holds for

πā.1 The 
ovariant derivative, for instan
e on ψa , is given by Dz̄ψ
a = ∂z̄ψ

a +Γ
a
bc
∂z̄ xbψc . Iwill 
all the Grassmann odd �elds fermions, though they have the wrong statisti
s.Among others (
f. appendix B.1), this theory has a symmetry generated by

1The reader who is puzzled by the presence of λ−1 in the last term in (3.1.1) might consider the following. Take the

usual action with metric g and not λg . Call the fermionic one form ρā , its indices are lowered with g
ab̄

. Now

introduce λg and identify πā = ρā , where πā is the corresponding field lowered by λgab̄ . Then Ra
bc̄d

ρaρ
bψc̄ψd ≃

λ−1R̃a
bc̄d

πaπ
bψc̄ψd because ρa =λ−1(λgab̄π

b̄), whereas R̃a
bc̄d

= Ra
bc̄d

and I omitted the tilde in the action.
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δ= κ++Q+++κ−−Q−− :
δxa = κ++ψa , δx ā = κ−−ψā ,
δψa = 0 , δψā = 0 ,
δπa = 2iκ−− ∂z̄ xa +κ++

Γ
a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (3.1.2)From the transformation of the fermions one 
an 
on
lude that the holomorphi
 embeddings

∂z̄ xa = 0 = ∂z x ā are �xed points of that symmetry. These are 
alled instantons, whereasthe antiholomorphi
 ones, whi
h are �xed points of another symmetry generator, are 
alledanti-instantons. The nilpotent generator Q0 = Q++ +Q−− is independent of the geometryof the domain manifold in the sense that [Pµ,Q0] = 0, as 
an be derived from the relation
[Q0,Gµ] = Pµ, where Gµ is another supersymmetry generator, 
f. appendix B.1.The a
tion above has more than just instantons as �xed points. In the following I will makelo
alization on instanton 
on�guration spa
e manifest, in order to satisfy ➄ of A. Therefore,I will again apply the Bogomolny tri
k and add a term whi
h ex
ludes the anti-instantons(i.e. antiholomorphi
 embeddings) from the global minima of the a
tion. When I write theLagrangian in �rst order form and integrate over the S1 
oordinate, the a
tion will have thesame shape as the Morse theory of the last 
hapter.
Excluding the Anti-InstantonsConsider the bosoni
 part of the a
tion, it 
an alternatively be written as

∫

Σ

d2z
(
2|∂z xa |2 −x∗(ωK )

) or ∫

Σ

d2z
(
2|∂z̄ xa |2 +x∗(ωK )

)
, (3.1.3)where ωK = i

2λgab̄ dxa ∧dx b̄ is the Kähler form. Obviously, the a
tion has both sorts ofinstantons as global minima. In order to ex
lude the anti-instantons I subtra
t ∫
Σ

x∗(ωK )from the a
tion above. The transformed a
tion
Sλ =

∫

Σ

d2z

(
2λgab̄ ∂z̄ xa∂z x b̄ + iπa Dz̄ψ

a + iπb̄Dzψ
b̄ −

1

2λ
Rab̄cd̄ πaπb̄ψcψd

)
(3.1.4)does not have the full supersymmetry of the former one but still the symmetry generated by

Q++ and Q−− .The pullba
k x∗(ωK ) of the Kähler form is a volume form on Σ and hen
e topologi
alwith respe
t to the domain manifold. However, it is de�ned with respe
t to the targetspa
e metri
 λg and the question remains if it 
hanges the topologi
al se
tor of the theory.Sin
e the Kähler form is 
losed, the integral ∫
Σ

x∗(ωK ) =
∫

x∗(Σ)ωK does only depend onthe 
ohomology 
lass of β := x∗(Σ) ∈ H2(X ,Z). Namely under a smooth mapping f : X → X ,
gp (U ,V ) 7→ g f (p)( f∗U , f∗V ) the homology 
lasses are not 
hanged. Thus, a

ording to [Nak03℄,
x∗(ωK ) and ( f ◦ x)∗(ωK ) are in the same 
ohomology 
lass. Therefore, the integral above
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is invariant under a smooth 
hange of the Kähler form, respe
tively the metri
 and thetopologi
al se
tor is not 
hanged by ex
luding the anti-instantons.By the 
hoi
e of β, the instanton 
on�guration spa
es 
an be distinguished. A familiarway to make that visible in the a
tion is to introdu
e the analogue of a theta angle. Insteadof subtra
ting ∫
Σ

x∗(ωK ) from (3.1.1), one adds a 
losed, 
omplex two form with real partproportional to the Kähler form B = Bab̄ d xa ∧d x b̄ := τ−ωK on X , τ= τab̄dxa ∧dx b̄ . Withthis de�nition
Sτ,τ̄= Sλ+

∫

Σ

x∗(τ) (3.1.5)and the last term yields the �theta angle�. Sin
e τ is a 
losed di�erential form on X , theintegral again depends only on the homology 
lass β. In order to preserve τ, the limit λ→∞is reformulated as the 
ondition that τ̄ab̄ := Bab̄ −
iλ
2

gab̄ →−i∞, whilst τ = const. . In thefollowing, I will not make use of the theta angle τ.
First Order Formalism and the Supersymmetric bc-SystemTo make lo
alization expli
it, I introdu
e a Lagrangian multiplier p = pa dzdxa +p ā dz̄dx āand rewrite the a
tion in �rst order form
Sλ =

∫

Σ

d2z
[
− ipa∂z̄ xa − ip ā∂z x ā + iπa Dz̄ψ

a + iπā Dzψ
ā +

1

2λ

(
g ab̄ pa pb̄ −Rab̄cd̄ πaπb̄ψcψd̄

) ]
.

(3.1.6)In the large volume limit λ→∞, the exponential of the a
tion be
omes a delta fun
tion onthe instanton moduli spa
es while the a
tion itself be
omes what is 
alled a supersymmetri
ghost or b
-system
S∞ =

∫

Σ

d2z
(
−ipa∂z̄ xa − ip ā∂z x ā + iπa∂z̄ψ

a + iπā∂zψ
ā
)

, (3.1.7)where I rede�ned p ′
a := pa +Γ

b
ac ψcπb and already left the prime away in the formula above.The supersymmetry takes the simple form

[Q0, xa] =ψa , [Q0, x ā ] =ψā ,
[Q0, p ā] = 0 , [Q0, pa ] = 0 ,
[Q0,πā] = p ā , [Q0,πa ] = pa , (3.1.8)in analogy with (2.1.10), and Q0 plays the r�le of the BRST operator. In se
tion 3.5.1 it willbe
ome 
lear in what respe
t Q0 
an be identi�ed with the de Rham di�erential. The a
tion

S∞ is Q0-exa
t
S∞ =

∫

Σ

d2z [Q0,−i(πa∂z̄ xa +πā∂z x ā)] , (3.1.9)and I will 
all it the topologi
al bc-system (Tb
). It will be the main 
hara
ter in thefollowing.
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Remark: Let me 
on
lude the large volume limit with a remark on the symmetries of theTb
. The a
tion (3.1.7) has an additional bosoni
 axial symmetry in analogy with (B.0.4),that the original a
tion did not have. Therefore, it seems that in the large volume limit, thetheory a
quires an additional anomaly. In se
tion 4.2 I will prove, that the bosoni
 axialsymmetry will be broken by the Grothendie
k-Cousin operators.
3.2 The Morse Theory behind the A-modelIn analogy with Frenkel et al. [FLN08℄, I will now reverse the analysis of Witten [Wit88b℄to obtain the super quantum me
hani
s (SQM) underlying the Tb
. It will di�er in twoaspe
ts from the model of 
hapter 2. The target manifold will not be simply 
onne
ted andthe 
riti
al manifold of the Morse fun
tion will not be zero-dimensional, su
h that additionalsteps have to be taken to redu
e the super quantum me
hani
s derived from the Tb
 to theMorse theory dis
ussed in the last 
hapter. Afterwards, I will restri
t to the 
ase X =CP

1 inse
tion 3.3.To extra
t the Morse theory, let Σ=R×S1 with lo
al 
oordinates z = t + iσ. For a �xed t ,the embedding xa |t (σ) is an element of loop spa
e LX :=
{
γ ∈C∞(S1, X ) : γ is 
ontra
tible}and 
an be represented by a Fourier series

xa |t (σ) =
∑

n∈Z
xa

n e−inσ . (3.2.1)Similar holds for the other �elds, for instan
e pa |t (σ) =
∑

n∈Z paneinσ. The modes xa
n are lo
al
oordinates on LX and one 
an reformulate the Tb
 as a SQM on LX by integrating out thedependen
e on S1. Up to irrelevant prefa
tors, the holomorphi
 part of the a
tion yields

S∞ =−i

∫
dt

(
pa,−n[∂t xa

n −v a
n (x)]−πa,−n[∂tψ

a
n −ψb

n∂b v a(x)]
)

(3.2.2)and similar holds for the antiholomorphi
 one. Summation over n is understood and
v a

n (x)∂an := −nxa
n

∂
∂xa

n
. The Lagrangian 
an be interpretedd as an in�nite sum Lagrangiansof the kind (2.1.9), if the vn are interpreted as 
omponents of the gradient �elds of a Morsefun
tion.The gradient �elds are asso
iated with the generator of loop rotations ∂σ. It is representedon the loops x by means of the ve
tor �eld v(x) =−i∂σxa∂a + i∂σx ā∂ā , ∂a := ∂

∂xa and on the
oordinates of LX by integrating over the parameter σ, ∫
S1 v a(x)∂a =

∑
n v a

n∂an. Therefore,the �xed points of v are the 
onstant loops, i.e. points on X . These are the zero modes xa
0 .Consequently, the �xed points of the gradient �eld are not isolated but 
omprise what is
alled a �
riti
al manifold�, whi
h in the situation above is X ⊂ LX .Another way to see this is by analyzing the spe
trum of the Hessian Haa n = −n. The
oordinates xa

n with n > 0 belong to negative eigenvalues and thus are 
oordinates on the
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as
ending manifold, 
oordinates with n < 0 belong to the des
ending manifolds while thezero modes xa
0 are 
oordinates at whi
h the Hessian is indi�erent.The instanton equation 
an be written as the �ow equation generated by the ve
tor �eld

v :
∂t xa −v a(x) = ∂t xa + i∂σxa = 0, (3.2.3)whi
h is nothing else but the 
ondition of holomorphi
ity ∂z̄ xa = 0. In lo
al 
oordinates of

LX the instanton equation is
∂t xa

n −v a
n(x) = 0, v a

n(x) =−nxa
n . (3.2.4)However, the SQM above di�ers in two aspe
ts from the one of the last 
hapter. Firstly, the
riti
al points are not isolated and se
ondly, the target manifold LX is 
onne
ted but not sim-ply 
onne
ted. This latter observation raises the question whether there exists a fun
tion fsu
h that d f = ιv gγ. Here, gγ is the indu
ed Kähler metri
 gγ(η1,η2) :=

∫
S1 λg |γ(η1(σ),η2(σ)),

η1/2 ∈ Γ(TγLX ), TγLX := γ∗T X are ve
tor �elds along the loop γ, and the 
ontra
tion is un-derstood as ιv gγ[η] =
∫

S1 λg |γ(v(σ),η(σ)). In the next se
tion I will introdu
e a potential su
hthat the ve
tor �eld v 
an be obtained as its gradient. The potential will, however, not besingle-valued on loop spa
e.
3.2.1 The PotentialOn a simply 
onne
ted, symple
ti
 manifold, every symple
tomorphism 
an be expressed asa gradient of some potential.2 The universal 
over of loop spa
e L̃X := {(γ, γ̃) | γ ∈ LX , γ̃ : D →
X s.t. γ= γ̃|∂D }/ ∼, where ∼ means equivalen
e under homotopy and D is the 
omplex unitdisk, is a simply 
onne
ted and symple
ti
 manifold (with the indu
ed Kähler metri
).In the situation of the last 
hapter, I subtra
ted a term −λ

∫
d f to get rid of the anti-instantons. It trivially determines the Morse fun
tion. This motivates to try

fγ(γ̃) :=−
∫

D
γ̃∗(ωK ) (3.2.5)as a 
andidate for the Morse fun
tion on L̃X . Indeed, taking the exterior derivative andevaluating it in the dire
tion of a smooth ve
tor �eld η ∈ TγLX , one obtains an appropriateone form on the boundary d fγ(γ̃)[η] =−

∫
S1 ωK (∂σγ,η) = ιv gγ[η], while the orthogonal, radialdire
tion does not 
ontribute. However, the potential is only single-valued on L̃X but multi-valued on LX , namely

fγ(γ̃) = fγ(γ̃′)−
∫

S2
(γ̃• γ̃′)∗(ωK ) (3.2.6)

2A symplectomorphism is a vector field v s.t. Lv ωK = d ιv ωK = 0, with ωK the symplectic form. If the manifold is

simply connected, a closed one form is already exact and ιvωK = d f for some f .
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when two disks γ̃ and γ̃′ with the same boundary γ are glued together (whi
h I denoted by the
• ). The sphere S2 is the generator of H2(X ,Z) and 
ounts the 
omponents of u−1(X ), X ⊂ LXin the universal 
over u : L̃X → LX . More illustrative, in the 
ase X = CP

1 it 
ounts thenumber of times the disks are wrapped around X .That the potential is multi-valued on loop spa
e has an impa
t on the spa
e of states andI will dis
uss that in se
tion 3.3.1. For the time being, let me note that under the mapping
u, LX fans out into leaves in L̃X , distinguished by H2(X ,Z). A

ording to Frenkel et al.[FLN08℄, I will denote these leaves as L̃X n , n ∈ H2(X ,Z).
3.2.2 Isolating the Critical PointsI will now approa
h the se
ond problem and isolate the 
riti
al points. This is done bydeforming the instanton �ow equation. The deformation will be su
h that the �xed point setis redu
ed to the points {0,∞} ∈ X . Frenkel et al. do a
hieve this by introdu
ing an additionaltarget spa
e symmetry into the a
tion, whi
h for the 
ase X =CP

1 will be a generator of the
C
× symmetry of X [FLN08℄.The starting point is the supersymmetri
 bc-system (3.1.7) whi
h I generalize in analogyto the Morse theory a
tion (2.1.9)

S :=
∫

Σ

d2z
(
−ipa [∂z̄ xa +µV a(x)]+ iπa [∂z̄ψ

a +µ∂bV a(x)ψb ]+c.c.
)

, (3.2.7)where µ ∈ R. This step 
an be understood as a deformation of the ve
tor �eld v(x) =
−i∂σxa∂a + i∂σx ā∂ā a

ording to v(x) 7→ V (x) = v(x)−µ V (x). The instanton equation is
hanged to

∂z̄ xa +µV a (x) = ∂t xa −V
a (x)= 0 (3.2.8)and its 
riti
al points are solutions of V

a (x) = 0.In order to approa
h the situation of the last 
hapter, it would be ni
e if in the situation
X =CP

1 these were again {0,∞} ∈ X . This 
an be a
hieved by 
hoosing the additional ve
tor�eld to be V (x) = xa∂a + x ā∂ā , whi
h is a generator of the C
× symmetry of CP1. Assumedthat the 
omposite ve
tor �eld V (x) is not degenerate, the 
riti
al manifold redu
es to theinterse
tion of the 
riti
al manifolds of V and v , whi
h 
onsists of the points {0} and {∞} ∈CP

1.A deformation of the gradient ve
tor �eld must be followed by a rede�nition of the Morsefun
tion f

fγ(γ̃) 7→ −
∫

D
γ̃∗(ωK )− iµ

∫

S1
HV (γ,σ)dσ , (3.2.9)where HV is the solution of dHV (γ,σ)[η] = ωK (V ,η), η ∈ TγLX . The deformation term onlydepends on the boundary γ and, hen
e, does not 
ontribute with an additional term to(3.2.6).
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The Deformation as “Gauging” the TheoryIn the 
ase of the symmetry I have just implemented, the a
tion further simpli�es to
S =

∫

Σ

d2z
(
−ipa (∂z̄ +µ)xa + iπa (∂z̄ +µ)ψa +c.c.

)
, (3.2.10)where µ now looks like a gauge 
onne
tion. Frenkel et al. give this interpretation a meaningby re
onsidering the original a
tion as a quantum me
hani
al system [FLN08℄. I will followtheir dis
ussion for the bosoni
 part whi
h thus takes the form

Sbos =−i

∫

R

[∫

S1
(pa∂t xa +p ā∂t x ā)dt ∧dσ−dt H (x, p)

]
, (3.2.11)with H (x, p)= p[v ], p[v ]=

∫
S1

(
pa (−i∂σxa)+p ā (i∂σx ā )

)
dσ. The Hamiltonian H (x, p) 
ouplesto the one form dt on R and one might be tempted to 
onsider the more general situationwhere it is a representation of some Lie algebra 
oupling to a gauge potential A(t )dt =

AL(t )H L(x, p)dt with [H L, H M ] = f LM
N H N .3In order to interpret the deformation as a sort of gauging, I let X = CP

1 and 
hoose
H 1 := p[V ], H 2 := p[U ] where U (x) = i(xa∂a − x ā∂ā) is the U (1) = R/2πZ generator on X and
V = xa∂a + x ā∂ā . These Hamiltonians are indeed representations of the Lie algebra of C

×with [H 1, H 2] = 0. The deformation of the a
tion 
an then be interpreted as a deformationof the Hamiltonian H (x, p)dt 7→ H (x, p)dt − AL(t )H Ldt with A1 = µ and A2 = ρ. The form ofthe a
tion (3.2.7), now in
luding fermions, is reprodu
ed when de�ning A z̄ :=µ+ iρ, µ,ρ ∈R

S =
∫

Σ

d2z
(
− ipa [∂z̄ xa + A z̄ V a(x)]− ip ā [∂z x ā + Az V ā (x)]

+ iπa [∂z̄ψ
a + A z̄ ∂bV a(x)ψb ]+ iπā [∂zψ

ā + Az ∂b̄V ā (x)ψb̄ ]
)

.

(3.2.12)and spe
i�
ally, for the dis
ussion above, when setting ρ = 0. For �nite time evolutions,the holonomy of A is invariant under the U (1) gauge transformation ρ 7→ ρ + 2πn
T , µ 7→ µ.However, the gauge �eld is not quantized and I will only use the name �gauged�, if I wantto expli
itely distinguish the a
tion (3.2.10), from now on 
alled the �gauged� Tb
, from thea
tion (3.1.7).

3.3 Perturbative Morse Description of the A-ModelFrom now on I will restri
t my 
onsiderations to the 
ase X =CP
1. Furthermore, I will write

x for the homolorphi
 and x̄ the anti-holomorphi
 target spa
e 
omponents and similar forthe other �elds. I assume that these 
oordinates are the inhomogeneous 
oordinates on CP
1.The a
tion I am going to 
onsider is the deformed one (3.2.10) with µ ∈ (−1,0).4

3The idea behind this is that exp{
∫

A(t)Hdt} can either be considered as a propagator, A = 1, or the holonomy of a

gauge field.
4The gauge field component µ is not allowed to be an integer since otherwise V would be degenerate. This will

become evident in equation (3.3.5).
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In the 
onse
utive se
tion I will determine the perturbative state spa
es of the underlyingMorse theory. After I will start with some general dis
ussion of the in-state spa
es and thendetermine the state spa
e lo
ated on the des
ending manifold with �xed point {0} ∈ CP
1 inse
tion 3.3.2. In order to derive the perturbative state spa
e on the des
ending manifoldwith �xed point {∞} ∈CP

1, it is ne
essary to make a 
hart transition, and I will explain howthis works in se
tion 3.3.3.
3.3.1 The Perturbative State SpacesIn the last 
hapter and parti
ularly se
tion 2.6, the perturbative state spa
es asso
iated witha des
ending manifold Xc have been obtained as

(
C[[xµ]]⊗∧[[dxµ]]

)
µ=1,...,nc

⊗
(
C[[∂µ]]⊗∧[[ιµ]]

)
µ=nc+1,...,dimR X

·∆c ,wherein dxµ are di�erential forms on and xµ are the 
oordinates along Xc whi
h has dimR Xc =
nc , while the derivatives are in the transversal dire
tions. The va
uum state ∆c was thevolume form on Xc , extended in the transversal dire
tions as a distribution.This situation 
arries over to the Morse theory behind the supersymmetri
 bc-system upto a pe
uliarity. Sin
e LX is not simply 
onne
ted, the perturbative state spa
es and alsothe des
ending manifolds will be bran
hed. On every leaf, the situation is however the sameas in the toy model of the last 
hapter.
Branching of the State SpacesIn the Morse theory of 
hapter 2, the perturbative states 
orresponding to a des
endingmanifold Xc have been obtained by solving H (pert)

Ψ= EΨ, and taking the large volume limitof eλ f
Ψ, 
f. 2.4. These states should be related with those of the Morse theory behind theA-model with a
tion Sλ = S −

∫
Σ

x∗(ωK ).In
luding the points {±∞} ∈ R su
h that Σ ≃ S2, I 
an split the integral
∫

S2 x∗(ωK ) =
∫

D γ̃− ∗ (ωK )−
∫

D γ̃+ ∗
(ωK ). Here, (γ̃− • γ̃+)∗ = x∗, γ̃− 
overs the hemisphere of

CP
2 in
luding a repulsive �xed point and γ̃+ 
overs the other hemisphere of X , in
luding anattra
tive �xed point. Therefore, the ket states of the super quantum me
hani
s on loopspa
e and asso
iated with some des
ending manifold LXc , are of the form

Ψ0 = e
∫

D γ̃− ∗(ωK )
Ψ (3.3.1)with Ψ a di�erential form on LX . Sin
e the integrand is not a total derivative, Ψ0 dependson the integration �path�. In parti
ular, from the dis
ussion in se
tion 3.2.1 follows that thestates are homotopi
ally distinguished by H2(X ,Z), whi
h measures how often Σ is wrapped

43



around X . Consequently, one 
an distinguish a sta
k of Hilbert spa
es by the winding number
n via the relation

Ψn := e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

Ψ0 , Ψn+m = e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

Ψm . (3.3.2)The full state spa
e of in-states, 
orresponding to some 
riti
al point xc ∈ LX , is the tensorprodu
t of the state spa
es with a spe
i�
 wrapping number,
H

in
c :=

⊗

n∈H2(X ,Z)

H
in
c ,n . (3.3.3)However, sin
e all states are isomorphi
 by a multipli
ation with

qn := e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

, (3.3.4)I will restri
t my dis
ussion to H
in
c ,0.5

3.3.2 The Perturbative State Space on L̃X 0,kThe operator q may serve to distinguish not only the leaves of the state spa
es but alsothe instanton se
tors (
f. pg. 37) and the leaves L̃X k . Therefore, I will asso
iate the k thinstanton se
tor with the k th bran
h and the k th se
tor of the state spa
e. Every leaf L̃X k
ontains Xk ≃ X and the preimages of the 
riti
al points with respe
t to u : L̃X → LX . Due to(3.3.2), the instanton equation looks the same on all leaves, and I will denote the des
endingmanifolds 
orresponding to some preimage xc ,k ∈ Xk of a 
riti
al point xc ∈ X by L̃X c ,k . Theperturbative state spa
es will be asso
iated with these des
ending manifolds.The perturbative state spa
es follow from the knowledge of the 
oordinates on the de-s
ending manifolds, 
.f. se
tion 2.6. Therefore, I 
onsider the instanton equation (3.2.4) forthe gauged Tb
 in a neighborhood of {0} ∈ X0,k

dt xn − (−n −µ)xn = 0, µ ∈ (−1,0) , (3.3.5)wherein the xn are 
oordinates of L̃X k for an arbitrary k. By means of the Hessian Hn =
−(n+µ) one 
an distinguish the dire
tions of the tangent spa
e along the des
ending manifold
L̃X 0,k . They belong to positive eigenvalues and are thus the {xn}n≤0, in
luding the 
riti
alpoint x0 = 0. The di�erential forms on L̃X 0,k are the modes {ψn}n≤0, and ψ0 
an be identi�edwith the usual holomorphi
 di�erential form dx0 on the zero mode part X0,k ⊂ L̃X 0,k, X0,k ⊂ Xkof the des
ending manifold:

xn ≃ xn , ψn ≃ dxn . (3.3.6)The momenta, 
onjugate to xn and ψn , n ≤ 0 are also 
oordinates along the des
endingmanifold. These are the modes ip−n and iπ−n with n ≥ 0, and they may be identi�ed withgeometri
 data a

ording to
ip−n ≃ ∂n , iπ−n ≃ ιn . (3.3.7)

5Frenkel et al. considered a different operator q with τ in the exponent, cf. section 3.1 and [FLN08].
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These 
oordinates satisfy the 
onditions for a 
anoni
al quantization [pn , xm] =−iδn,−m and
[πn ,ψm] =−iδn,−m . Consequently, the perturbative state spa
e on L̃X 0,k , k = 0, now in
ludingthe antiholomorphi
 part, must 
ontain the span

H
in
0,0 =C[xn , x̄n ,ψn ,ψ̄n]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 ·∆0 , (3.3.8)where

∆0 = ΞL̃X 0,0
(ψ1ψ2 · · · )(ψ̄1ψ̄2 · · ·) ,

ΞL̃X 0,0
∼

∏

n>0,m≥0

δ(2)(xn , x̄n)δ(2)(ψn ,ψ̄n)δ(2)(pm , p̄m)δ(2)(πm , π̄m)
(3.3.9)a
ts like a 
hara
teristi
 fun
tion along L̃X 0,0 and a distribution in the other 
oordinates.I have been 
arful with stating that the state spa
e 
ontains (3.3.8) and not with 
laimingthat it equals this spa
e. The reason is that I want to relate the perturbative state spa
esof Morse theory to a 
onformal �eld theory. If in the spirit of Morse theory the �eld modesare interpreted as simple 
oordinates or di�erentials, it makes sense to allow for Taylorexpansions and thus for power series. However, the representations of CFTs are usuallyspanned by polynomials [KR87℄. Yet, if this related CFT will be formulated on CP
1 this
ondition must be relaxed for the zero modes, 
f. se
tion 3.5.1.An alternative way to identify the des
ending manifolds is to 
onsider the instanton �owequation (3.2.3) for x(z) in the gauged Tb
 and after a 
hange to radial 
oordintates ω =

t + iσ 7→ exp ω∈C
×

(
∂z̄ +

µ

z̄

)
x(z) = 0. (3.3.10)To derive this, it is ne
essary to remember that A = Aωdω+ Aω̄dω̄ and Aω̄ = µ transformslike a one form, A z̄ = Aω̄

∂ω̄
∂z̄
. In parti
ular, if I add the point {0} to C

× and 
onsider theinstanton �ow equation of the Morse theory to the va
uum 
on�guration {0} ∈ X when z 7→ 0(⇔ t 7→ −∞), i.e. invoking x(0) = 0, the solutions
x(z) = |z|−2µ

∑

n≤0

xn z−n , x(0) = 0, µ ∈ (−1,0) (3.3.11)reprodu
e the �ow lines along the des
ending manifold and thus along the state spa
e (3.3.8).6In the equation above I have s
aled x with the �homogeneity� |z|2µ. It would have beensu�
ient to multiply z̄µ, however, the solution x would then have been multi-valued. Single-valuedness of the �elds and of 
orrelation fun
tions is a property demanded by 
onformal�eld theories, and I anti
ipated this in the solution above.
6The solutions ascending to {0} ∈ X0,0 require a different boundary condition: x(∞) = 0. Notice further, that closing

C
× to the disk C

×∪ {0} ≃ D and demanding x(0) = 0 identifies x ∈ LX with an element in L̃X .
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3.3.3 The Perturbative State Space on L̃X ∞,kIn order to derive the state spa
e on L̃X ∞,0, it is at suggestive to make a 
oordinate transitionfor x ∈ LX

x(σ) 7→ x̃(σ) = x̃ne−inσ := [x(σ)]−1 , (3.3.12)where I de�ne x(σ)−1 = x−1
0

∑∞
n=0(−)n x−n

0 ∆x(σ)n by a Taylor expansion and with help of
∆x(σ) =

∑
k 6=0 xk e−ikσ. For the only mode being inverted one has to assume that x0 6= 0.Noti
e, that the inverse [x(σ)]−1 is well de�ned be
ause x0 has the meaning as a simple
oordinate on CP

1.Under this 
oordinate transition, the instanton �ow equation (3.2.8) is 
hanged to
∂t x̃n − (−n +µ)x̃n = 0, (3.3.13)or alternatively in radial 
oordinates z = exp t + iσ for x̃(z) to

(
∂z̄ −

µ

z̄

)
x̃(z) = 0. (3.3.14)This mirrors, that the a
tion (3.2.10) is not invariant under 
oordinate 
hanges.7 In analogyto the dis
ussion in the last se
tion, I 
an now add the point {∞} = {x̃0 = 0} ∈ X∞,0 to C

× andsolve the instanton equation with boundary 
ondition x̃(0) = 0 (z → 0 ⇔ t →−∞), in orderto extra
t the 
oordinates along the des
ending manifold L̃X ∞,0. The single-valued solutionfor x̃ reads
x̃(z) = |z|2µ

∑

n<0

x̃n z−n , (3.3.15)and similar holds for ψ̃. The other �eld modes along L̃X ∞,0 
an now indire
tly be obtained asthe modes 
onjugate to those of x̃ and ψ̃. Therefore, the perturbative state spa
e on L̃X ∞,0equals
H

in
∞,0 =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 ·∆∞ , (3.3.16)with

∆∞ =ΞL̃X ∞,0
(ψ0ψ1 · · ·)(ψ̄0ψ̄1 · · · ) ,

ΞL̃X ∞,0
∼

∏

n≥0,m>0

δ(2)(xn , x̄n)δ(2)(ψn ,ψ̄n)δ(2)(pm , p̄m)δ(2)(πm , π̄m) .
(3.3.17)This �ts with an analysis of the eigenvalues of the Hessian H̃n =−n +µ.

3.4 Relation to Conformal Supersymmetric GhostsOn a �rst sight, these state spa
es equal parti
ular representations of the 
onformal super-symmetri
 bc-system (CSb
) with domain manifold C
× and target spa
e C. I will �rst give

7The composition x 7→ x−1, µ 7→ −µ is a symmetry of the action.
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a brief introdu
tion to the CSb
 whi
h should 
larify this relation. Afterwards, I am goingto explain why I am 
areful with identifying the CSb
 and the Tb
, though I will arguethat the perturbative state spa
es of the Morse theory underlying the gauged Tb
 
an bemodelled by the CSb
.I assume that the reader has a basi
 knowledge of CFTs, otherwise she or he may 
onsult[Fri85, Gin88, Gab00℄.
3.4.1 The Conformal Supersymmetric bc-SystemAs long as it is not logarithmi
ally extended [DF08℄, the CSb
 is assumed to split into(equivalent) holomorphi
 and antiholomorphi
 halves. For the moment I will start with theholomorphi
 part.
Representation TheoryLet the domain manifold be C

× with 
oordinates z = et+iσ and the target spa
e be C. TheCSb
 
onsists of bosoni
 �elds x(z) =
∑

n∈Z xn z−n and p(z) =
∑

n∈Z pn z−n−1, whose modesde�ne a Heisenberg algebra [pn , xm] =−iδn,−m , and of the superpartners ψ(z) =
∑

n∈Zψn z−n ,and πn =
∑

n∈Zπn z−n−1 whi
h 
omprises a Cli�ord algebra [πn ,ψm] =−iδn,−m .8 There existsa whole sta
k of �
harged� representations
xn |p〉− = 0 =ψn |p〉+ , n >−p , pn |p〉− = 0 =πn|p〉+ , n ≥ p (3.4.1)with p ∈Z [FF91, Fri85℄. In the 
ase of the fermions, these representation spa
es are equiv-alent be
ause all highest weight states are related by

|p〉+ =ψ−p+1 · · ·ψ0|0〉+ , p ≥ 0,

|p〉+ = ip πpπp+1 · · ·π−1|0〉+ , p < 0.
(3.4.2)This does not hold for the bosoni
 representation spa
es, as I am going to dis
uss in se
tion3.6.2. This observation will be of 
ru
ial importan
e for the existen
e of the Grothendie
k-Cousin operators.The representation spa
es are graded by some bosoni
 and fermioni
 U (1) 
urrents j−(z)=

−i : x(z)p(z) : and j+(z) =−i : ψ(z)π(z) :, where normal ordering is de�ned in the |0〉± va
uum.9Under that 
ondition, |p〉ǫ has 
harge −ǫp, where ǫ=+1 for fermions and −1 for the bosons.The �eld modes satisfy [ j−n , xm] = −xn+m , [ j−n , pm] = pn+m, [ j+n ,ψm] = −ψn+m , [ j+n ,πm] =
πn+m and the 
urrents 
omprise Lie Heisenberg algebras [ j ǫn , j ǫm] = ǫnδn,−m. A

ording to

8Remember, that [·, ·] denotes the superbracket.
9I use : · : as a C-linear mapping such that λ : a +b :=: λa +λb :,λ ∈C.
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Feigin and Frenkel [FF91℄, I will denote the thus graded representation spa
es as M ǫ(p) =
⊕

l∈Z M ǫ(p)l , where l is the U (1) 
harge.To the algebra of the �eld modes 
orresponds the operator produ
t algebra of the �elds.It is represented on the p va
ua by means of the operator produ
t expansions (OPEs)
x(z)p(ω) =

i

z −ω

( z

ω

)p
, ψ(z)π(ω) =

−i

z −ω

( z

ω

)p
,

p(z)x(ω) =
−i

z −ω

(ω
z

)p
, π(z)ψ(ω) =

−i

z −ω

(ω
z

)p
.

(3.4.3)The Virasoro algebra is represented on these spa
es by the energy momentum tensor
T (z) = i : p(z)∂z x(z)−π(z)∂zψ(z) : , T (z) =

∑

n∈Z
Tn z−n−2 . (3.4.4)It 
an be obtained from the �elds

G (z)= i : π(z)∂z x(z) : and Q(z) = i : p(z)ψ(z) : (3.4.5)by T (z)= [Q0,G (z)], where Q0 =
∮

0 Q(z). These �elds together with the fermioni
 U (1) 
hargede�ne a twisted N = 2 super
onformal algebra [DVV91℄. Sin
e the bosoni
 and fermioni
parts 
ontribute with opposite 
entral 
harges cǫ = −2ǫ, the 
omposite system has 
entral
harge zero.The basi
 �elds have 
onformal weights
∆T (x) = 0 =∆T (ψ) and ∆T (p) = 1 =∆T (π) (3.4.6)and the 
ommutation relations with the Virasoro generators are [Tn , xm] = −(m +n)xm+n,

[Tn , pm] =−mpn+m and analogously for the fermions. In parti
ular, one has [ j ǫ0,T0] = 0 andthe Hamiltonian respe
ts the grading of the representation spa
es M ǫ(p)l .
The Antiholomorphic PartThe antiholomorphi
 
urrents ne
essarily have to be taken into a

ount, when the CSb
 getsrelated to the Tb
. Two reasons are that the Tb
 has an anomaly free ve
torial 
urrent andthe 
entral 
harge is zero. These e�e
ts 
an be a
hieved for the CSb
, only if the holomorphi
and antiholomorphi
 parts are both 
onsidered.I de�ne the antiholomorphi
 
urrents to be

j̄+(z̄) =+i : ψ̄(z̄)π̄(z̄) : , j̄−(z̄) =+i : x̄(z̄)p̄(z̄) : , (3.4.7)with representation spa
es just as before. A

ording to my 
hoi
e of sign in that de�nition,the grading is, however, di�erent, namely M̄ ǫ(p̄) =
⊕

l∈Z M̄ ǫ(p̄)l , j̄ ǫ0 |p̄〉ǫ = ǫp̄ |p̄〉ǫ. Sin
e
j ǫV (z, z̄) = j ǫ(z)+ j̄ ǫ(z̄) ,

j ǫA(z, z̄) = j ǫ(z)− j̄ ǫ(z̄)
(3.4.8)
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are the ve
torial and axial 
urrents, respe
tively, the 
hoi
e above invokes that the holomor-phi
-antiholomorphi
 representation spa
es M ǫ(p, p̄) =
⊕

l ,s∈Z M ǫ(p)l⊗M̄ ǫ(p̄)s are graded withrespe
t to the ve
torial 
urrents. At this stage, this 
hoi
e is a question of 
onvenien
e,however, when the CSb
 is logarithmi
ally deformed, the bosoni
 axial symmetry will bebroken, whi
h I am going to explain in se
tion 4.2.Con
erning the other �elds in the antiholomorphi
 half, they are de�ned in 
ompleteanalogy with the holomorphi
 s
enario. The full Virasoro algebra a
ts on M ǫ(p, p̄) by meansof
T −(z, z̄) = i : ∂z x(z)p(z)+∂z̄ x̄(z̄)p̄(z̄) : ,

T +(z, z̄) = i : ∂zψ(z)π(z)+∂z̄ψ̄(z̄)π̄(z̄) :
(3.4.9)under whi
h the state |p, p̄〉ǫ := |p〉ǫ⊗|p̄〉ǫ has 
onformal weight

∆T ǫ(|p, p̄〉ǫ) =
1

2
ǫ[p(p −1)+ p̄(p̄ −1)] , (3.4.10)as follows from 
al
ulating (T ǫ

0 + T̄ ǫ
0 )|p, p̄〉. Together with the super
harges

Q(z, z̄) = i : p(z)ψ(z)+ p̄(z̄)ψ̄(z̄) : and G(z, z̄)= i : π(z)∂z x(z)+ π̄(z̄)∂z̄ x̄(z̄) : , (3.4.11)the 
omplete CSb
 determines a twisted N = (2,2) super
onformal algebra.
Ground StatesThe full, supersymmetri
 theory has several states with weight zero, i.e. all 
ombinations of
|0〉± and |1〉±. However, only one of them, |0,0〉 := |0,0〉−⊗|0,0〉+, is a 
onformally invariantground state. This 
an be seen by applying T±1. For instan
e, the state |1,1〉, whereby

|p, p̄〉 := |p, p̄〉−⊗|p, p̄〉+ , (3.4.12)has weight zero but is not invariant under T±1. A 
omputation shows that T−1|1,1〉 = i(x−1p0+
ψ−1π0)|1,1〉 6= 0, and similar for the antiholomorphi
 part.
Correlation Functions and UnitarityLike the Tb
, the CSb
 is not unitary. I will now dis
uss, how that 
an be understood as ane�e
t of the anomaly q of the 
urrents

T (z) j ǫ(ω) =
q

(z −ω)3
+

j ǫ(z)

(z −ω)2

[Tn , j ǫm] =−m j ǫn+m +
q

2
n(n +1)δn,−m

, q= ǫ . (3.4.13)
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Similar holds for the antiholomorphi
 part with q̄=−ǫ. The appearan
e of the anomaly for
T1 means that j ǫ(z) is not invariant under SL(2,C)/Z2 transformations. Under a holomorphi
transformation z 7→ f (z), the 
urrents a
quire an additional term

j ǫ(z)= j ǫ( f (z))∂z f +
q

2

∂2
z f

∂z f
. (3.4.14)The quantities that make non-unitarity manifest are the 
orrelation fun
tions. These are

C-bilinear mappings (|q〉,φ(z)|p〉) = q 〈φ(z)〉p ∈ C, whereby φ is an arbitrary 
ombination ofquasi-primary �elds and their �eld modes. This pairing is de�ned su
h, that the adjointof φ(z) is obtained by the transformation z 7→ z−1, whi
h maps an in
oming to an outgoing�eld.10 Moreover, it shall be SL(2,C) invariant and respe
t the operator produ
t algebra(OPA) in the sense that q〈b(z)c(ω)〉p = b(z)c(ω) for appropriate q, p.11 What is meant by�appropriate� will be 
lari�ed below.The adjoint 
urrents, in the sense above, are given by
j ǫ † (ω) = z−2 j ǫ(z−1) , j̄ ǫ

†
(ω) = z̄−2 j̄ ǫ(z̄−1) ,

j ǫ †
k

= −q δk ,0 − j ǫ−k
, j̄ ǫ

†
k = −q̄ δk ,0 − j̄ ǫ−k

.
(3.4.15)Due to the di�erent sign of q = ǫ and q̄ = −ǫ, the adjoint of the ve
torial 
urrent remainsanomaly free. If, however, the holomorphi
 part is 
onsidered separately, the anomalies dueto z 7→ z−1 have to be 
ompensated, if the 
orrelation fun
tions are supposed to be SL(2,C)invariant. Therefore, they have to satisfy

(|q〉, j ǫ(z)φ(ω)|p〉) = ( j ǫ
†

(ω)|q〉,φ(ω)|p〉) . (3.4.16)In parti
ular, for the zero mode ( j ǫ0
† |q〉, |p〉) = ([−q+ q]|q〉, |p〉) != (|q〉,−p|p〉) = (|q〉, j ǫ0|p〉),and the state dual to |p〉 is given by (| −p +q〉, ·). In the following I will use the notation

〈p| = (|q〉, ·), su
h that
〈q |p〉 = δq,−p+q . (3.4.17)The same line of arguments holds if any 
ombination of �elds is inserted, and the non-trivial
orrelation fun
tions are subje
t toCorr(q, p)=
{

q〈φ(z)〉p : J(φ) = q +p −q
}

, (3.4.18)whereby J(φ) denotes the total 
harge of that 
ombination. The 
harge q is 
alled a ba
k-ground 
harge, it 
auses that the dual �bra� and �ket� states determine a pairing but not as
alar produ
t.
10This conjugation shall not be confused with the definition of the dual states I have used in (2.2.5). The adjoint fields

here are different, for they are not the antiholomorphic counter parts.
11Usually, one also demands that correlation functions be single valued. This can be achieved by including the anti-

holomorphic half, and the way how to do that is restricted by the demand to build a single-valued quantity.
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3.4.2 Identifying the State SpacesThe Fo
k spa
e of the CSb
 in the representation on |0,0〉 equals
H0 =C[xn , x̄n ,ψn ,ψ̄n]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 · |0,0〉 , (3.4.19)whi
h seems to be identi
al with the perturbative state spa
e (3.3.8) on L̃X 0,0, when the �eldmodes are related and under ∆0 ≃ |0,0〉. This is further promoted by the observation thatupon 
anoni
al quantization, the loop spa
e 
oordinates and �eld modes satisfy the same
ommutation relations, 
f. pg. 44. However, the identi�
ation fails to be exa
t with respe
tto the quantum numbers of the �eldmodes and states.Moreover, a

ording to (3.4.1) and if the CSb
 were 
onsidered on the 
hart of CP1 in-
luding the point {∞}, the representation
H∞ =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 · �|1,1〉 (3.4.20)should stru
turally be identi�ed with the perturbative state spa
e of Morse theory (3.3.16),putting H

in
∞,0 ≃ H∞ and ∆∞ ≃ �|1,1〉. It is, however, not yet 
lear how to de�ne the CSb
on CP

1 and, in parti
ular, how to implement 
hart transitions. This has been ta
kled byMalikov, S
he
htman and Vaintrob [MSV99℄, and will be the subje
t of se
tion 3.5.1. BeforeI dis
uss this topi
, I will extend the CSb
 by introdu
ing the homogeneities, appropriateto a

omodate the quantum numbers. Moreover, I will brie�y dis
uss the 
onsequen
es itwould have if one related the CSb
 without homogeneity to the ungauged Tb
. This willtou
h the question if the Tb
 
an be identi�ed with a CFT.
The CSbc with HomogeneityFor 
onvenien
e, I will restri
t my 
onsiderations to the 
hart around 0 ∈ CP

1. The Hamil-tonian of the Morse des
ription of the topologi
al bc-system (3.2.10) is
H =−i

∑

n∈Z
(µ+n)(xn p−n +ψnπ−n + x̄n p̄−n + ψ̄nπ̄−n)

=
∑

n∈Z
(LVn

+L
V̄n

) , Vn =−(µ+n)xn∂n , V̄n = (Vn)
(3.4.21)and due to the shift by µ di�ers from T0 =T +

0 +T̄ +
0 +T −

0 +T̄ −
0 . One 
an over
ome this mismat
hof energies by rede�ning the �elds of the CSb
:

x(z) =
∑

n∈Z.

xn z−n |z|−2µ , p(z) =
∑

n∈Z
pn z−n−1|z|2µ , (3.4.22)and similar for the fermions [FLN08℄. As has been the 
ase for the Morse theory, the �eldsare not holomorphi
 any more. Indeed, the equation of motion for the 
onformal �eld x withhomogeneity µ equals the instanton equation of Morse theory (

∂z̄ + µ
z̄

)
x(z) = 0. Furthermore,
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the boundary 
ondition whi
h sele
ted the des
ending manifold for Morse theory has been
x(0) = 0 and led to the expansion (3.3.11). In 
ase of the CSb
, this boundary 
onditionis realized by plugging in the representation |0,0〉 and 
onsidering the on-shell expansion of
x(z), i.e.

x(z)|0,0〉−= |z|−2µ
∑

n≤0

xn z−n|0,0〉 . (3.4.23)The �eld rede�nitions introdu
e tadpoles due to the inhomogeneity. Cal
ulating T (z)T (ω),one �nds that the stress tensor should be 
orre
ted
T ǫ(z) 7→ T ǫ(z)+

ǫµ(µ+1)

2z2
, T̄ ǫ(z̄) 7→ T̄ ǫ(z̄)−

ǫµ(µ+1)

2z̄2
, (3.4.24)where T ǫ, T̄ ǫ are de�ned as before but with the rede�ned �elds. However, the full stresstensor has no tadpoles and its zero mode equals the Hamiltonian of the Morse theory, T0 = H .Indeed, [T0, xn] = (−µ−n)xn , [T0, pn] = (µ−n)pn and similar for the other �eld modes. Thehighest weight states obtain new 
onformal weights of value ∆T ǫ (|p〉ǫ) = ǫ

2 (p −µ)(p −µ−1),while the 
entral 
harges for the bosons and the fermions are still the same. The U (1) 
hargesare also 
orre
ted by tadpoles,
j ǫ(z) 7→ j ǫ(z)+

ǫµ

z
, j̄ ǫ(z̄) 7→ j̄ ǫ(z̄)−

ǫµ

z̄
, (3.4.25)while the 
harge anomalies are not a�e
ted. Thus, the states |p〉ǫ and |p̄〉ǫ have U (1) 
hargesof value −ǫ(p −µ) and ǫ(p̄ −µ), while the 
harges of the �eld modes are insensitive to µ.Let me 
on
lude that for the CSb
 with homogeneity one may identify

H
in
0,0 ≃H0 , ∆0 ≃ |0,0〉 , (3.4.26)and the �eld modes and states have the 
orre
t quantum numbers.

3.4.3 What if the Gauge Field is Absent?Having stated a 
orresponden
e between the low energy spe
trum of the gauged Morse theoryon the des
ending manifold L̃X 0,0 and the CSb
 with homogeneity, one might now ask, ifthe CSb
 with µ = 0 were the appropriate theory to des
ribe the Morse theory of the Tb
without gauge �eld? The Hamiltonians are identi
al and the �eld modes have the sameenergies. I will now argue, that su
h a relation fails, be
ause the Tb
 without gauge �eldhas more topologi
al states than the ordinary CSb
.
The Topological States of Morse Theory without HomogeneitySin
e the Hessian is inde�nite on the zero modes, these 
oordinates are neither transversal
oordinates nor 
oordinates along the des
ending manifold. Moreover, they have zero energy
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and in prin
iple may be multiplied to the ground states. Thus, there are not su
h strong
onstraints on the ground states as in the situation with gauge �eld.A �rst 
onsequen
e is that in the zero modes the ground states are smooth di�erentialforms on X =CP
1 with respe
t to the de Rham di�erential d, i.e. elements of Ω•

d
(X ) [FLN08℄.To 
omprise ground states in the sense of topologi
al states, this spa
e must be furtherrestri
ted by the BRST 
ondition Q0∆0 = 0. In analogy with (2.2.4) and in 
oordinates ofloop spa
e, the BRST 
harge for the Morse theory equals

Q0 = i
∑

n∈Z
(ψn p−n + ψ̄n p̄−n) . (3.4.27)In parti
ular, its zero mode part 
an be identi�ed with the usual de Rham derivative d= ∂+∂̄on X . Sin
e CP

1 has Betti numbers dim H 0
d

(X ,R) = dim H 2
d

(X ,R) = 1 and dim H 1
d

(X ,R) = 0,all 
losed di�erential forms must have an even form degree, i.e. an even number of ψ0, ψ̄0.Consequently, the zero mode part of the topologi
al states 
omprises even graded di�erentialforms on X , and there do not exist states with an odd number of ψ0..In 
ontrast, if µ ∈ (−1,0), the zero modes have non-vanishing energy and are not subje
t tothe restri
tion via Q0. In parti
ular, this signi�es that the theory with gauge �eld in
ludesdi�erential forms with odd numbers of ψ0,ψ̄0.
The Ungauged Morse Theory is not Canonically Related to the CSbcThe representation spa
e for the CSb
 
onsists of polynomials in the zero modes and not ofsmooth di�erential forms. However, in my oppinion this is not the main aspe
t whi
h makesthe di�eren
e to the Morse theory with µ = 0, as 
laimed by Frenkel et al. in [FLN08, pg.32℄. As already mentioned on pg. 45, the zero modes will be allowed to appear in powerseries, when the CSb
 is generalized to the 
hiral de Rham 
omplex [MSV99℄. Rather, thedi�eren
e lies in the following observation. The ground states in the Morse type theory donot ne
essarily fa
torize into holomorphi
 and antiholomorphi
 (target spa
e) 
oordinates,in general there do not exist holomorphi
 and antiholomorhpi
 fun
tions h and h̄ su
h that
f (x0, x̄0)ψ

p
0 ψ̄

q
0 = [h(x0)ψ

p
0 ] · [h̄(x̄0)ψ̄

q
0 ]. In ordinary 
onformal �eld theories this is, however,the 
ase be
ause the Virasoro algebra fa
torizes. Therefore, the va
uum se
tor of the CSb
is smaller than that of the Tb
 when µ= 0.That the holomorphi
 and antiholomorphi
 parts do not fa
torize is a property whi
h isalso typi
al for logarithmi
 
onformal �eld theories. However to the best of my knowledge,this is still untypi
al for the ground states. At least it indi
ates that if the Tb
 withoutgauge �eld is 
onformal, it 
an not be an ordinary 
onformal �eld theory.
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3.5 Conformal Supersymmetric Ghosts on CP
1In the last se
tion I have obtained the perturbative state spa
es of the Morse theory un-derlying the Tb
. The most important observation has been that they 
an be modelledby representations of the 
onformal supersymmetri
 bc-system (CSb
). However, this rela-tion had the drawba
k that the CSb
 is not globally de�ned on CP

1, su
h that I 
ould notreprodu
e the 
hart transition of the Morse theory on the level of the CSb
.I will now 
larify how the CSb
 
an be formulated globally on CP
1 and introdu
e the
hiral de Rham 
omplex [MSV99℄. This se
tion will 
on
lude the analysis of the perturbativerepresentation theory of the Morse theory underlying the Tb
.

3.5.1 The Chiral de Rham ComplexThe 
hiral de Rham 
omplex generalizes the usual de Rham 
omplex on X to a larger
omplex Ω
•
Q0

(X ), de�ned on a sheaf of vertex algebras on X . In the 
ontext of the A-model, it will be the Dolbeault 
omplex with is generalized by the 
ohomology operator
Q0 = ∂+D, [∂,D] = 0, Q

2
0 = 0. Hereby, ∂ denotes the holomorphi
 (Dolbeault) di�erential on

X , and the vertex algebra under 
onsideration is the holomorphi
 CSb
 with homogeneity, 
f.se
tion 3.4.1. Its super
harge Q0 = i
∑

n∈Zψn p−n will play the r�le of the generalized exteriordi�erential.
Local Vertex Algebra of the CSbcConsider the holomorphi
 CSb
 with homogeneity and embedding x : Σ→C0 ⊂ X =CP

1. For
onvenien
e, I 
hoose the representation to be M ǫ(0) on |0〉 = |0〉+⊗|0〉−.The state spa
e 
an be identi�ed with the polynomials in the modes
P0 =C[xn ,ψn , ]n≤0 ⊗C[pn ,πn]n<0 (3.5.1)and one 
an de�ne a so-
alled vertex operator, 
onstituting an isomorphy between �elds andstates

Y (x0, z)= x(z) , Y (x−n , z)=
1

n!
∂n

z x(z) , n < 0,

Y (p−1, z)= p(z) , Y (p−n , z)=
1

n!
∂n

z p(z) , n <−1,

(3.5.2)and similar for the other �elds. For any monomial y1 · · · yk whi
h is built by elements yi ∈
{xn , pm ,ψn ,πm}n≤0,m<0 the vertex operator is generalized by means of

Y (y1 · · · yk , z) =: Y (y1, z) · · ·Y (yk , z) : , (3.5.3)
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and this further extends to polynomials. In order to simplify notations, I will equivalentlywrite Y (y1 · · · yk , z) = y1 · · · yk (z).Due to their transformation property under Q0 and their 
onformal weights, at least for
µ = 0, the zero modes 
an be identi�ed with the geometri
 data on X , as has already beendone for the Morse theory, 
f. (3.3.6) and (3.3.7). On that grounds, it would be ni
e toextend the de�nition of the vertex algebra to power series in the zero modes. I will adoptthe approa
h of [MSV99, pg. 449f℄ to the situation µ 6= 0. Let f (x0) be a power series andde�ne Y ( f (x0), z) by the Taylor expansion

Y ( f (x0), z) :=
∞∑

n=0

∆x(z)n 1

n!
∂n
|z|−2µx0

f (|z|−2µx0) , ∆x(z) = |z|−2µ
∑

k 6=0

xk z−k . (3.5.4)One 
an write ∆x(z)n =
∑

k∈Z ck (|z|)z−k , wherein ck (|z|) is an in�nite sum of monomials of thekind {|z|−2µxn}n 6=0. On any |v〉 ∈C[xn , pn ,ψn ,πn]n<0⊗C[[x0,ψ0]] · |0〉, ck (|z|) breaks down to a�nite sum and thus Y ( f (x0), z) is a well de�ned endomorphism on that spa
e. The thus gen-eralized �elds 
an be multiplied by any polynomial �eld g (y)(z), y ∈ {xn , pm ,ψn ,πm}n≤0,m<0

Y (g (y) f (x0), z) =: Y (g (y), z)Y ( f (x0), z) : . (3.5.5)The inverse operation, to obtain a state given a �eld, works by
f (y)= Y ( f (y), z)|µ=0 · |0〉

∣∣
z=0

, (3.5.6)where Y ( f (y), z) is an arbitrary �eld. Thus, Y de�nes an isomorphism between states and�elds.
Local Extension of the de Rham ComplexSin
e the zero modes 
an be identi�ed geometri
 data on X , the super
harge Q0 takes therequired form Q0 = ∂+d−+d+, d− :=

∑
n<0 p−nψn and d+ =

∑
n>0 p−nψn on P0. Malikov etal. [MSV99℄ prove, that there is a quasiisomorphism (Ω,∂) → (P0,Q0), where Ω = C[x0,ψ0].That means, ∂ does only a
t on the subse
tor of the zero modes and 
ommutes with d±and the 
ohomologies are the same H•

∂
(Ω) ≃ H•

Q0
(P0). The proof is made by su

essively
al
ulating the 
ohomologies of d+ and d− and 
an be generalized to Ω = C[[x0,ψ0]] and

P0 = C[xn , pn ,ψn ,πn]n<0 ⊗C[[x0,ψ0]], 
f. [MSV99, pg. 448℄. Thus, lo
ally, the de Rham
omplex generalizes to a 
omplex of vertex algebras under Q0.
Chart TransitionsIn order to extend the lo
al setting to CP

1, it is espe
ially important to give the mapping
X0,0 \ {0} ≃C

× ∋ x0 7→ x−1
0 a meaning on the level of �elds.
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Firstly, on the level of �eld zero modes p0 a
ts as a derivative and thus a 
ommutationwith x−1
0 
an be de�ned as [p0, x−1

0 ] = −[p0, x0]x−2
0 . Now, in analogy with (3.5.4), the �eld
orresponding to x−1

0 
an be de
lared to equal
Y (x−1

0 , z) = |z|2µx−1
0

∞∑

n=0

(−)n |z|2nµx−n
0 ∆x(z)n , (3.5.7)where I de�ne Ỹ (x̃0, z) = Y (x−1

0 , z). For 
onvenien
e, I will also use the notation Ỹ (x̃0, z) =
x̃(z) = |z|2µ

∑
n∈Z x̃n z−n. Noti
e, that in analogy with (3.4.2), the transformed �eld x̃ satis�esthe equation of motion (∂z̄ − µ

z̄
)x̃(z) = 0.In the same spirit as above, Malikov et al. generalize 
hart transitions of the other zeromodes to 
hart transitions of �elds. Let f : x0 7→ φx = f (x0) be an invertible 
oordinatetransformation with f ∈C[[x0]]. Sin
e they 
an be related to geometri
 quantities on X , theother �eld zero modes transform a

ording to

φx = f (x0) , φψ =
∂ f

∂x0
ψ0 ,

φp =
∂ f −1

∂φx
p0 +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ0π0 , φπ =

∂ f −1

∂φx
π0 .

(3.5.8)Here, Malikov et al. assume that the a
tion 
orresponding to the CSb
 equals (3.1.7), where
pa is rather p ′

a = pa+Γ
b
acψ

cπb. The transformation of Γ 7→
(
∂ f −1

∂φx

)2 ∂ f

∂x0
Γ+ ∂2 f −1

∂φ2
x

∂ f

∂x explains why
p0 above does not transform homogeneousely. The �elds 
orresponding to the power seriesabove are now de�ned to be

φx (z) = f (x0)(z) , φψ(z) =:
∂ f

∂x0
(z)ψ(z) : ,

φp (z) =:
∂ f −1

∂φx
(z)p(z)+

∂2 f −1

∂φ2
x

∂ f

∂x0
(z)ψ(z)π(z) : , φπ(z) =:

∂ f −1

∂φx
(z)π(z) : .

(3.5.9)This de�nition is not obtained by simply using the vertex operator on the �eld modes above.The reason is twofold. Firstly, Y is not de�ned on π0 and p0 sin
e they are not part of P0.Se
ondly, the de�nition is su
h that the transformed �elds are again primary �elds.In a next step, that I will not reprodu
e, the authors verify that the transformed �eldspreserve the 
ommutation rules (3.4.3). The ambitioned reader may 
he
k this for thefollowing example, making use of the relation
f (x)(z)p(ω) =

∂ f

∂x0
(ω) x(z)p(ω) (3.5.10)and similar for p(z) f (x)(ω). In terms of the �eld modes, this amounts to [p0, f (x0)] =

[p0, x0]∂x0
f (x0).
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Example in Logarithmic Coordinates A parti
ular example that I will make use of inappendix C is the CSb
 in logarithmi
 
oordinates x0 7→ exp x0. The thus transformed �eldsare
φx (z) =: ex(z) : , φp (z) =: e−x(z)

[
p(z)−ψ(z)π(z)

]
: ,

φψ(z) =: ex(z)ψ(z) : , φπ(z) =: e−x(z)π(z) : .
(3.5.11)A 
oordinate transition φx 7→φ−1

x 
hanges the sign of the �elds {x, p,ψ,π} above.
The Vertex Operator Algebra in the New Fields The vertex algebra in terms of the�elds in (3.5.9) is obtained in analogy to (3.5.2) and (3.5.3). The question is indeed not howthe �elds are 
onstituted, but how to get ba
k the �eld modes in the new 
oordinates. Thisis obtained by (3.5.6). In parti
ular, for a monomial y1

n1
· · · y N

nN
, where yk

n is a �eld modeamong P0, one 
an spe
ify the 
orresponding states in the new 
oordinates a

ording to
φy 1

n1
···y N

nN
|0〉 = [φy 1

n1
(z)]n1

· · · [φy N
nN

(z)]nN
· |0〉 , (3.5.12)where [φy (z)]n denotes the �eld mode (φy )n in the expansion φy (z) = |z|2µ

∑
n∈Z(φy )n z−n−∆.Important examples are the 
omposite �elds Q(z), T (z), G (z) and j±(z). Take, for instan
e,

φQ(z) = i : φp (z)φψ(z) :, a

ording to the dis
ussion above this �eld is obtained as φQ(z) =
Y (iφp−1

φψ0
, z). Is it possible to further express the �eld modes (state) in terms of the originalones and thereby obtain a formulation in terms of the original �elds? In the new 
oordinates,the state 
orresponding to the super
harge reads

φQ|0〉 = i

(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψπ

)

−1

(z)

(
∂ f

∂x0
ψ

)

0

(z) · |0〉 =

i

[(
∂ f −1

∂φx

)

0

p−1

][(
∂ f

∂x0

)

0

ψ0

]
· |0〉 +

i

[(
∂ f −1

∂φx

)

−1

p0 +
(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

π0

](
∂ f

∂x0

)

0

ψ0 · |0〉 ,where I noted down all modes that potentially 
ontribute non-trivially. To normal order theexpression above, I 
ommute them to the right su
h that
i(φp )−1(φψ)0 · |0〉 = ip−1ψ0 · |0〉 +

[(
∂2 f

∂x2
0

)

0

(
∂ f −1

∂φx

)

−1

ψ0 +
(
∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

(
∂ f

∂x0

)

0

]
· |0〉 .Here, I used (3.5.10) in order to 
al
ulate the 
ommutator [p0, x0]. Now, the fa
t that (

∂2 f

∂x2
0

)

0
=

−
(
∂ f

∂x0

)3

0

(
∂2 f −1

∂φ2
x

)
0
, and (

∂ f −1

∂φx

)
−1

(
∂ f

∂x0

)
0
=−

(
∂ f

∂x0

)
−1

(
∂ f −1

∂φx

)
0
allows to simplify the expression above,and one ends up with

φQ(z) =Q(z)+∂z

[
∂φx

(
log

∂ f −1

∂φx

)
φψ(z)

]
. (3.5.13)
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In parti
ular, sin
e the �
orre
tion� to Q is only a derivative in z, the zero mode is invariantunder a 
oordinate 
hange, i.e. Q0 = φQ 0, the 
ohomology 
harge of the 
hiral de Rhamsystem must already globally de�ned on X .This observation holds for the zero modes of the fermioni
 
urrent, and also the stresstensor T (z) is globally de�ned on X , as follows from:
φ j+(z) = j+(z)+∂z log

(
∂ f

∂x0

)
, φG (z) =G (z) (3.5.14)and T (z) = [Q0,G (z)]. Consequently, the j+0 operator, that measures the fermioni
 
harge,and the BRST operator are well de�ned on the 
hiral de Rham 
omplex and j+0 determinesa grading of the sheaf. The bosoni
 U (1) 
urrent does not transform in a parti
ular ni
e way,as the reader might want to 
he
k. In logarithmi
 
oordinates one gets

φ j−(z) =− j+(z)− ip(z) , (with φx (z) = ex (z)) . (3.5.15)

The CSbc on CP
1The out
ome of the former se
tions is that I 
an lo
ally write down the CSb
 and apply
hart transitions. In order to formulate the theory globally on CP

1, the lo
al vertex algebrashave to be glued together.Let
F0 :=C[[x0,ψ0]]⊗C[xn,ψn]n<0 ⊗C[pn ,πn]n<0 · |0〉 . (3.5.16)together with Y be the CSb
 on C0 and
F∞ =C[[x̃0,ψ̃0]]⊗C[x̃n,ψ̃n]n<0 ⊗C[p̃n , π̃n]n<0 · |0̃〉 (3.5.17)with Ỹ another CSb
 on C∞. To both, I 
an apply x0 7→ x−1

0 = x̃0, x̃0 7→ x̃−1
0 = x0 and formulatethe theories on the overlap C

×. By means of (3.5.9), Y 7→ Ỹ and vi
e versa, and the vertexalgebras 
an be glued together
F

× =C[[x−1
0 ,ψ0]]⊗C[xn,ψn]n<0 ⊗C[pn ,πn]n<0 ⊗·|0〉

≃C[[x̃−1
0 ,ψ̃0]]⊗C[x̃n,ψ̃n]n<0 ⊗C[p̃n , π̃n]n<0 ⊗·|0̃〉 .

(3.5.18)This heuristi
ally 
on
ludes the interpretation of the CSb
 as a sheaf on CP
1.12

Sheaves with Support In order to dis
uss the 
hiral de Rham 
omplex asso
iated to thetopologi
al A-model it is ne
essary to extend the analysis to se
tions with support in 
losed
12For a rigorous prove that the CSbc on CP

1 and more general manifolds X constitutes a sheaf, cf. [MSV99].
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or lo
ally 
losed subsets.13 In parti
ular, the perturbative state spa
e on L̃X∞,0 are modeledby
F

1
∞ =C[x̃n ,ψ̃n]n<0 ⊗C[p̃n , π̃n]n≤0 · |1̃〉 , (3.5.19)whi
h is the holomorphi
 part of (3.4.20), and not by F∞.While the fermioni
 part of thatspa
e 
an be identi�ed with the one in F∞, be
ause all these representations are isomorphi
(3.4.2), this is not true for the bosons.I will not attempt to enlarge the analysis of the Chiral de Rham 
omplex to (lo
ally)
losed subsets. I will rather assume that this 
an be done and that F0 and F

1
∞ are part ofa sequen
e similar to (2.5.3) or (2.6.2).

3.6 Beyond the Perturbative RepresentationsIn the last se
tions, I have des
ribed the perturbative state spa
es of the A-model on targetspa
e X =CP
1. While the ground states are already globally and nonperturbatively de�nedon X , the exited states may be sensitive to nonperturbative 
orre
tions whi
h destroy theirlo
al 
hara
ter, 2.5. One distinguished pla
e where these 
orre
tions appear is the Hamilto-nian, and the main task in the following se
tions will be to determine the analogues of theGrothendie
k-Cousin operators of 
hapter 2. Throughout my thesis, I will denote these anal-ogous operators as �Grothendie
k-Cousin operators�, though the term may not be 
orre
tfor the in�nite dimensional setting.In order to determine the Grothendie
k-Cousin operators, I will bosonize the CSb
 in thespirit of Feigin and Frenkel [FF90, FF91℄ and of Friedan, Martine
 and Shenker [FMS86,Fri85℄. Thereby, I obtain the GCOs in a spe
i�
 formulation of the vertex algebra of theCSb
. As already mentioned, this des
ription di�ers from the one used by Frenkel et al.[FLN08℄, and ex
tends the analysis of [FF90, FF91, FMS86, Fri85℄.Moreover, I will dis
uss the interpretation of the GCOs as 
ohomology operators. In thebosonized des
ription of the vertex algebras de�ned by (3.5.16) and (3.5.19), it will be
ometransparent that the GCOs are the bosoni
 analogues of the s
reening operator for the purelyfermioni
 bc-system, 
f. [FFH+02℄.

3.6.1 Existence of Grothendieck-Cousin OperatorsThe Grothendie
k-Cousin operators δ are mappings between the perturbative state spa
es
H0/∞,n subje
t to the 
ondition (2.6.1):

∃ δ : H in
∞/0,n →H

in
0/∞,k ⇔ L̃X 0/∞,n ≺ L̃X ∞/0,k . (3.6.1)

13A locally closed set is a set which is an intersection of an open with a closed set.
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Therefore, one has to 
larify whi
h des
ending manifolds satisfy L̃X 0/∞,n ≺ L̃X ∞/0,k . I oweEdward Frenkel a ni
e proof of the fa
t that L̃X ∞,n ≺ L̃X 0,n and L̃X 0,n+1 ≺ L̃X ∞,n.The proof starts with re
onsidering the situation of Morse theory on CP
1 in se
tion 2.4.The target manifold is de�ned as CP1 := (C2\{0})/C×, where C2\{0} ∋ ( f , g ) ∼λ( f , g ), λ ∈C

× arethe homogeneous 
oordinates.14 In terms of homogeneous 
oordinates, when identifying theve
tors (0,1) with {0} ∈CP
1 and (1,0) with {∞} ∈CP

1, one 
an des
ribe now X0 as the C
× orbitof ( f ,1) and X∞ as the C

× orbit of (1,0). These reprodu
e the inhomogeneous 
oordinates for
X0 by z = f ∈C, whereas for X∞ it is ω= 0 and X∞ ≃ {∞}. One 
an now proof that X∞ ≺ X0by letting f 6= 0 and ( f ,1) ∼ (1, f −1)

f →∞−→ (1,0).The spa
e �LCP1 
an analogously be de�ned by (C[[z]]×C[[z]]− {0})/C×[[z]] with ve
tors
C[[z]]×C[[z]] ∋ ( f (z), g (z)) ∼ λ(z)( f (z), g (z)), λ ∈ C

×[[z]]. Here, C[[z]] denotes the spa
e ofpower series in z with f (z) =
∑

n≤0 fn z−n, where z ∈ D, and similar holds for g (z).In the situation under dis
ussion µ ∈ (−1,0), and the des
ending manifolds L̃X 0/∞,n 
or-respond to solutions of the instanton equation with boundary 
ondition x(0) = 0. As dis-
ussed in 3.4.2, in a neighborhood of {0} ∈ CP
1 they read x(z) = |z|−2µ∑

n≥0 x−n zn and L̃X 0,khas inhomogeneous 
oordinates {xn}n≤0. In a neighborhood around {∞} one has solutions
x̃(z) = |z|2µ

∑
n≥1 x−n zn and inhomogeneous 
oordinates {x̃n}n≤−1 on L̃X ∞,k , 
f. se
tion 3.3.3.The des
ending manifold L̃X 0,k 
an now be des
ribed as the orbit of ( f (z), g (z)) under

C
×[[z]], whereby

f (z) ∈ zk |z|−µC[[z]] , g (z) = (1+O(z))zk |z|µ ∈ zk |z|µC[[z]] .Analogously, L̃X ∞,k is obtained as the orbit of ( f (z), g (z)) with
g (z) ∈ zk+1|z|µ ·C[[z]] , f (z) = (1+O(z))zk |z|−µ ∈ zk |z|−µC[[z]] ,and g is proportional to an additional fa
tor of z in order to yield the 
orre
t expansionindex in x̃(z) = |z|2µ

∑
n≥1 x−n zn. Moreover, I have assumed that z 6= 0 and s
aled the powerseries by zk in order to distinguish the index by H2(X ,Z). Without loss of generality I set

µ= 0 and prove below that ➊ L̃X ∞,k ≺ L̃X 0,k and ➋ L̃X 0,k+1 ≺ L̃X∞,k .
➊ Let ( f (z), g (z)) = zk ( fk + O(z),1 + O(z)) be an element of L̃X 0,k with fk 6= 0, then

( f (z), g (z)) ∼ zk (1+O(z), f −1
k

+O(z))
gk→∞−→ zk (1+O(z), zh(z)) with h ∈ C[[z]], and this is anelement of L̃X ∞,k .

➋ Let ( f (z), g (z)) = zk (1 + O(z), gk+1z + O(z2)) be in ∈ L̃X ∞,k with gk+1 6= 0, then
( f (z), g (z)) ∼ zk (g−1

k+1
+O(z), z +O(z2))

gk+1→∞−→ zk+1(h(z),1+O(z)), where h(z)∈C[[z]], and thisis an element of L̃X 0,k+1.
14In the former sections I have considered the descending manifolds X0 ≃C and X∞ ≃ {∞} always in inhomogeneous

coordinates.
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To 
on
lude, in the situation that X =CP
1 and the gauge �eld is determined by µ ∈ (−1,0),there exist two sorts of Grothendie
k-Cousin operators

δ1 : H
in
∞,n →H

in
0,n ,

δ2 : H
in
0,n+1 →H

in
∞,n .

(3.6.2)

3.6.2 Chiral BosonizationThe method of 
hiral bosonization goes ba
k to Friedan, Martine
 and Shenker [FMS86℄ andstarts with the holomorphi
 (or antiholomorphi
) part of the CSb
. In the following, I willgeneralize this approa
h to the CSb
 with homogeneity µ.In order to treat the bosons and fermions in one and the same formalism, I res
ale the�elds of the CSb
 in 3.4.1
ǫ=− : x 7→ b− , ip 7→ c− ,

ǫ=+ : ψ 7→ b+ , iπ 7→ c+ ,
(3.6.3)whereby the index ǫ dis
riminates bosons, ǫ=−, from fermions, ǫ=+. The basi
 idea of 
hiralbosonization is to express the Heisenberg and Cli�ord algebras and their representations interms of Heisenberg Lie algebras A

ǫ(h) :
[Jǫn , Jǫm] = ǫnδn,−m (3.6.4)with representation

Jǫnν
ǫ
h = hδn,0 ·νǫh , n ≥ 0, h ∈C , (3.6.5)and equally for the antiholomorphi
 part. I de�ne the �elds 
orresponding to Jǫ as

Jǫµ(z) = Jǫ(z)+
ǫµ

z
, Jǫ(z)Jǫ(ω) =

ǫ

(z −ω)2
,

J̄ǫµ(z̄) = J̄ǫ(z̄)−
ǫµ

z̄
, J̄ǫ(z̄) J̄ǫ(ω̄) =

ǫ

(z̄ − ω̄)2
.

(3.6.6)The di�erent signs for the holomorphi
 and antiholomorphi
 �elds will be understandablewhen it 
omes to mat
h the Heisenberg Lie algebras with the CSb
. The a
tion of theVirasoro algebra on these representations is given by
TJǫ (z) = ǫ :

1

2
Jǫµ(z)2 +α0∂z Jǫµ(z) : , T̄ J̄ǫ (z̄) = ǫ :

1

2
J̄ǫµ(z̄)2 + ᾱ0∂z̄ J̄ǫµ(z̄) : . (3.6.7)Taking the OPE between TJǫ and Jǫµ yields

TJǫ (z)Jǫµ(ω) =
−2α0

(z −ω)3
+

Jǫµ(z)

(z −ω)2
, (3.6.8)
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and similar for the antiholomorphi
 situation. Thus, I set α0 = −1
2
ǫ, ᾱ0 = 1

2
ǫ, in order toobtain the same ba
kground 
harges as for the CSb
, 
f. (3.4.13). Noti
e, that now

TJǫ (z)=
ǫ

2
(Jǫ(z)2 −ǫ∂z Jǫ(z))+

µ

z
Jǫ(z)+

ǫ

2

µ(µ+1)

z2
,

T̄Jǫ (z̄)=
ǫ

2
( J̄ǫ(z̄)2 +ǫ∂z̄ J̄ǫ(z̄))−

µ

z̄
J̄ǫ(z̄)+

ǫ

2

µ(µ+1)

z̄2
.

(3.6.9)The 
entral 
harge for the holomorphi
 as well as the antiholomorphi
 part is given by c Jǫ =
(1−3ǫ) and νǫ

h,h̄
:= νǫ

h
⊗νǫ

h̄
is a highest weight ve
tor with 
onformal weight ∆TJǫ+T̄ J̄ǫ

(νǫ
h,h̄

) =
1
2
ǫ[h(h +ǫ)+ h̄(h̄ −ǫ)+2µ(µ+1)]+µ(h − h̄) and 
harges h +ǫµ, h̄ −ǫµ.Bosonization means to de�ne an a
tion of the Cli�ord and Heisenberg algebras on thesespa
es. Therefore, one introdu
es the operators

V ǫ(r, z)=: exp
(
rφǫ(z)

)
:= eǫrφǫ

0 |z|2rµzǫr Jǫ0
∑

n∈Z
V ǫ

n (r )z−n

= eǫrφ0 |z|2rµzǫr Jǫ0 e−ǫr
∑

n<0
Jǫn
n

z−n

e−ǫr
∑

n>0
Jǫn
n

z−n

, r ∈C\ {0}

(3.6.10)and similar operators for the antiholomorphi
 �eld, whereby the bosoni
 s
alar �elds are
φǫ(z) =µ log z̄ +ǫ

∫z

Jǫµ(ω)dω =µ log |z|2 +ǫ

(
φǫ

0 + Jǫ0 log z −
∑

n 6=0

Jǫn

n
z−n

)
,

φ̄ǫ(z̄) =µ log z +ǫ

∫z̄

J̄ǫµ(ω̄)dω̄=−µ log |z̄|2 +ǫ

(
φ̄ǫ

0 + J̄ǫ0 log z̄ −
∑

n 6=0

J̄ǫn

n
z̄−n

) (3.6.11)with [φ0, Jǫn] = −ǫδn,0 = [φ̄0, J̄ǫn]. The vertex algebra is de�ned by taking derivatives andprodu
ts of the operators V ǫ, just as for the CSb
. The OPE of two �elds V ǫ in the va
uum
νǫ

h
is

V ǫ(r, z)V ǫ(s,ω) = (z −ω)ǫr s |z|2rµ|ω|2sµzǫrhωǫsh : V ǫ(r, z)V ǫ(s,ω) : ,

V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) = (z̄ − ω̄)ǫr s |z|−2rµ|ω|−2sµ z̄ǫrh ω̄ǫsh : V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) :
(3.6.12)the 
harge of V ǫ 
an be read o� from

Jǫ(z)V ǫ(r,ω) =
r

z −ω
V ǫ(r,ω)+

ǫ

r
∂ωV ǫ(r,ω) (3.6.13)to be of the value r for the holomorphi
 and also for the antiholomorphi
 �eld. Taking theOPE with the energy momentum tensors, their 
onformal weights read

∆TJǫ
(V ǫ(r, z)) =

1

2
ǫ r (r +ǫ) , ∆T̄ J̄ǫ

(V̄ ǫ(r, z̄)) =
1

2
ǫ r (r −ǫ) . (3.6.14)In parti
ular, the operator

eǫrφ0 : A
ǫ
− 1

2
ǫ
(h) →A

ǫ
− 1

2
ǫ
(h + r ) , νǫh 7→ νǫh+r , (3.6.15)
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and hen
e also V ǫ(r, z), are mappings between di�erent representations of the Heisenberg Liealgebra. In addition, the shift operator 
orre
tly 
hanges the 
onformal weight of the highestweight ve
tor νǫ
h

[(TJǫ )0, eǫrφ0 ] ·νǫh = (
1

2
ǫ r (r +ǫ)+ǫr h) ·eǫrφ0νǫh , (3.6.16)and similar for the antiholomorphi
 operator. Therefore, introdu
ing the operators V ǫmakes an extension of the Heisenberg Lie modules to the modules ⊕

l∈ZA
ǫ
− 1

2
ǫ
(h + l ) and

⊕
l∈Z Ā

ǫ
1
2
ǫ
(h̄ + l ), ne
essary, whereby l distinguishes se
tors of di�erent U (1) 
harges, mea-sured by Jǫ0 and J̄ǫ0.

Bosonizing FermionsIn the fermioni
 
ase, the a
tion of the Cli�ord algebra of the bc-system is generated by
c+(z) ≃V +(+, z) , c̄+(z̄) ≃ V̄ +(−, z̄) ,

b+(z) ≃V +(−, z) , b̄+(z̄)≃ V̄ −(+, z̄) ,
(3.6.17)and ⊕

l∈ZA
+
− 1

2

(−p + l ) ≃ M+(p) and ⊕
l∈ZA

+
1
2

(p̄ + l )≃ M̄+(p̄) [FF91℄.Indeed, the �elds above have the 
orre
t OPEs (3.4.3) in
luding the homogeneity and,when I further identify
j+(z)+

µ

z
≃ J+µ (z) , j̄+(z̄)−

µ

z̄
≃ J̄+µ (z̄) ,

T +(z) ≃ TJ+ (z) , T̄ +(z̄) ≃ T̄ J̄+ (z̄) ,

(3.6.18)also the 
orre
t 
harges and 
onformal weights. In parti
ular, the vertex operators abovea
t on ν+−p,p̄ like the original �elds b+ and c+ on |p, p̄〉+. The �eld modes 
an be determinedby the Fourier expansions, for instan
e for V +(−, z),
V +(−, z)ν−p = |z|−2µzp e−φ0

∑

n≤0

V +
n (−)z−nν−p

= |z|−2µ
∑

m≤−p

e−φ0V +
m+p (−)z−mν−p

(3.6.19)in analogy with b+(z)|p〉+ = |z|−2µ∑
n≤−p b+

n z−n|p〉+, and similar holds for the other �eldmode V +(+, z). The �eld modes inherit the 
orre
t 
ommutation relations from the OPEs.Moreover,
|p, p̄〉+ ≃ ν+−p,p̄ (3.6.20)and these states have the same 
onformal weight and axial and ve
torial 
harges.

63



Bosonizing BosonsIn the bosoni
 
ase [FF91, FF90℄ one has to in
lude an auxiliary fermioni
 bc-system be
auseof the wrong 
entral 
harge. Thus, I introdu
e fermioni
 s
alars ξ(z), ξ̄(z̄) and fermioni
 �eldsof weight one η(z), η̄(z̄) (all these �elds do not have a homogeneity). The 
urrents and thestress tensor are de�ned as before, see se
tion 3.4.1.The operators
c−(z) ≃V −(+, z)⊗η(z), c̄−(z̄) ≃V −(−, z̄)⊗ η̄(z̄) ,

b−(z) ≃V −(−, z)⊗∂zξ(z) , b̄−(z̄) ≃V −(+, z̄)⊗∂z̄ ξ̄(z̄)
(3.6.21)have the 
orre
t OPE to de�ne an a
tion of the Heisenberg algebra on a subspa
e of

N (p, p̄) =
(
⊕

l∈Z
A

−
1
2

(p + l )⊗A
+
ηξ,− 1

2

(l )

)
⊗

(
⊕

s∈Z
Ā

−
− 1

2

(−p̄ + s)⊗Ā
+
ηξ,+ 1

2

(s)

)
, (3.6.22)where I impli
itly assumed that the auxiliary part may be bosonized as before. The adequatesubspa
e will be determined in the next se
tion. For 
onvenien
e, whenever I 
onsider the(anti)holomorphi
 part alone, I will use the notation (N̄ (p)) N (p̄) in the following. Thespa
e N (p) 
olle
ts all possible Verma modules by the �elds above and by their derivativesrepresented on the states . . . , ν−p+1|−1〉ηξ, ν−p |0〉ηξ, ν−p−1|1〉ηξ , . . . .To prove that the spa
es above respe
t the OPE of the bosoni
 ghosts, on has to take intoa

ount that the bosonized �elds are tensored s.t., c−(z)b−(ω) ≃V −(+, z)∂zξ(z)V −(−,ω)η(ω) .Moreover, sin
e the auxiliary part and the �elds V − have the same U (1) 
harges in (3.6.21),the vertex algebra is graded with the same 
harges for the ηξ-system and the vertex operatorsas above, whi
h explains the summation indi
es. For the same reason I may identify

j−(z)−
µ

z
≃ J−(z) =

1

2

(
J−µ (z)+ jηξ(z)

)
, j̄−(z̄)+

µ

z̄
≃ J̄−(z̄) =

1

2

(
J̄−µ (z̄)+ j̄ηξ(z̄)

)
. (3.6.23)These 
urrents measure the 
harge of the representation spa
es. In se
tion 4.2 I will argue,that the 
oupling of the auxiliary 
urrent with J−µ 
auses that the bosons do not introdu
ean additional anomaly into the theory. Similarly, the stress tensor of the bc-system a
ts likea sum of the stress tensors of the parts of the bosonized system

T −(z) ≃TJ− (z) − : ∂zξ(z)η(z) : , T̄ −(z̄)≃ T̄ J̄− (z̄) − : ∂z̄ ξ̄(z̄)η̄(z̄) : . (3.6.24)The �elds in (3.6.21) have the 
orre
t 
onformal weights and 
harges under these identi�-
ations and they 
omprise the relations (3.4.1) on ν−p,−p̄⊗|0,0〉ηξ. However, only if the bosoni
axial symmetry was broken, one 
an determine states that have the same bosoni
 ve
torial
harge as the 
orresponding states of the non bosonized CSb
. Sin
e the axial symmetry willbe broken due to the GCOs, I will now assume this to be true. Under these 
ir
umstan
es
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and for p = p̄, the state |p, p〉− has the same quantum numbers as ν−p,−p ⊗|0,0〉ηξ. Therefore,I will identify
|p, p〉− ≃ ν−p,−p ⊗|0,0〉ηξ . (3.6.25)Noti
e, that only the diagonal (p = p̄) representation spa
es N (p, p) will be relevant for ananalysis of the A-model.

Grading of N (p, p) The spa
es N (p, p̄) are graded by the zero modes of
JN (z, z̄) =

1

2

{
[J−µ (z)− jηξ(z)]− [ J̄−µ (z̄)− j̄ηξ(z̄)]

}
, (3.6.26)whi
h further respe
t the grading by 
onformal weight and the fermion number. The 
urrent

JN generates a third symmetry besides the ve
torial and axial symmetries, whi
h is dueto the extension of the bosons by the auxiliary fermions. Due to the 
ombination of the
urrents J−µ and jηξ, JN is anomaly free. Still, also this symmetry will be broken due tothe Grothendie
k-Cousin operators, whi
h ensures that JN does not enter the theory as anadditional symmetry.
Possible Vacuum Representations The 
ondition of zero 
onformal weight is satis�edby the states that 
onsist of all possible 
ombinations of ν−p,q |s, t〉ηξ with p, s, t ∈ {0,1} and
q ∈ {0,−1}. Here is the 
olle
tion of su
h states in the representation N (1,1), that will be
omeimportant in the following se
tions

ν−1,0|0,1〉ηξ
ν−1,−1|0,0〉ηξ ν−0,0|1,1〉ηξ

ν−0,−1|1,0〉ηξ

. (3.6.27)The states in the middle have zero ve
torial 
harge and 
omprise a doublet within N (1,1).The state on the top has a ve
torial 
harge of value 1, and the lowest state has 
harge −1.However, only the state ν−1,−1|0,0〉ηξ is an element of the representation spa
e of the bosonizedbosons, as I will explain below. The state ν−0,0|1,1〉ηξ will later obtain the interpretation asthe logarithmi
 partner of ν−0,0|0,0〉ηξ ∈ N (0,0).A further remark has to be made. If JN gets broken as a symmetry of the theory, thereis no reason why ν−0,0|0,0〉ηξ should be in a di�erent multiplet than ν−0,0|1,1〉ηξ. Indeed,only then, those two states 
an be logarithmi
 partners, be
ause there is no way to furtherde
ompose the two-dimensional representation of the Hamiltonian on these states by meansof an additional symmetry.
Restriction of N (p, p̄) The representation spa
e N (p, p̄) above is not yet the 
orre
t repre-sentation of the Heisenberg algebra de�ned by b− and c−. Due to the absen
e of the zero
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modes ξ0 and ξ̄0, the vertex algebras must be 
ontained in the interse
tion of the kernels of
η0 and η̄0 and the spa
e N (p, p̄) is too large.In addition, from Feigin's and Frenkel's analysis in [FF91℄ it follows that the 
orre
trepresentation spa
e for the holomorphi
 part (without loss of generality) 
oin
ides with thekernel of η0: The kernel of η0 is obtained by applying ( jηξ)n , ηn with n ∈ Z and ξn , n 6= 0to |0〉ηξ. Consequently, the representation spa
e of the bosonized bosons equals the kernelof η0 if η, ∂zξ and jηξ 
an be expressed in terms of the �elds b, c and V −. This is possibleby means of jηξ(z) =−∂zφ(z), ∂zξ(z) = 1

2
∂z b−(z)⊗V −(+, z) and η(z) = ∂z c−(z)⊗V −(−, z). Thesame holds for the antiholomorphi
 �elds.Therefore, M−(p, p) ≃ N (p, p), whereby the overline denotes the interse
tion of the equi-valen
e 
lasses N (p) and N̄ (p) of �eld operators modulo η0 and η̄0, respe
tively.This result yields a ni
e heuristi
 interpretation why the instanton e�e
ts are supposedto be found within the bosoni
 part of the CSb
 and not within the fermioni
. Due to thepresen
e of c+0 and b+

0 in the �eld operator algebra, the representations of the fermioni
ghosts on ν+0 and ν+−1 are isomorphi
. For the fermions, there exists only one fundamentalva
uum, namely ν+0 sin
e it has the highest symmetry.15 On the other hand, the bosoni
representations on ν−0 ⊗ |0〉ηξ and ν−1 ⊗ |0〉ηξ are di�erent, for ξ0 is absent as a dynami
aldegree of freedom and η0 is e�e
tively set to zero in the operator algebra, as argued above.The bosoni
 ghosts 
an thus be 
onsidered to 
omprise dynami
al degrees of freedom in thepresen
e of di�erent ba
kground va
ua. For these reasons, the 
harged representations ofthe bosons may serve as a sour
e for instantons, to be introdu
ed additionally to the bosoni
ghosts, interpolating between those ba
kgrounds. These explanations will obtain an exa
tmathemati
al sense in terms of the Grothendie
k-Cousin operators.
Summary of the Main FactaIn order to des
ribe the perturbative state spa
es of the gauged topologi
al A-model interms of bosonized bosons, it is su�
ient to restri
t the representation spa
e to the diagonalsituation p = p̄. As a result, M−(p, p)≃ N (p, p) and the highest weight ve
tor is now uniquelydetermined by |p, p〉 ≃ νp,−p ⊗|0,0〉ηξ. In parti
ular, only the state ν−1,−1|0,0〉 in the diamond(3.6.27) is an element of N (1,1).The perturbative state spa
es for the A-model on CP

1 
an now be identi�ed with thebosonized representation spa
es
H

in
0,0 =F0 ⊗F̄0 ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗Ā
+
1
2

(s′)]⊗N (0,0) ,

H
in
∞,0 =F

1
∞⊗F̄

1
∞ ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗Ā
+
1
2

(s′)]⊗N (1,1) ,
(3.6.28)

15I will discuss the representation theory of the conformal ghost systems more detailed in section 8.3.
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where I used that all fermioni
 representation spa
es are equivalent (
.f. (3.4.2)), and 
onse-quently ⊕
s A

+
− 1

2

(s +p)≃
⊕

s A
+
− 1

2

(s).The stress tensor and fundamental �elds are derived above. The super
harge, must also be
omposed by bosoni
 and fermioni
 �elds. An immediate 
al
ulation proves that the �elds
Q(z)=V +(−, z)⊗V −(+, z)⊗η(z) , Q̄(z̄) = V̄ +(+, z̄)⊗ V̄ −(−, z̄)⊗ η̄(z̄) (3.6.29)have the 
orre
t OPEs with the bosonized �elds to be identi�ed with the super
harge

Q(z, z̄) =Q(z)+Q̄(z̄).I will now approa
h the question what operators may serve to de�ne the Grothendie
k-Cousin operators.
3.6.3 The GCOs and the Cohomology InterpretationBy (3.6.15), the nilpotent operator c+0 ≃ eφ

+
0 is a 
ohomology operator

· · ·→A
+
− 1

2

(−p)
eφ+

0−→A
+
− 1

2

(−p +1) →··· , (3.6.30)
f. [FFH+02℄. However, sin
e it 
onne
ts isomorphi
 representation spa
es, this operator 
annot be the GCO mapping between F0 and F
1
∞. As just explained, the di�eren
e betweenthe perturbative state spa
es must be rooted in the bosoni
 se
tor.The extension of N (p, p̄) to N (p, p) by means of eφ

−
0 ξ0 and e−φ̄

−
0 ξ̄0 permits a nontriviala
tion of η0 and η̄0. Thereby, one obtains a 
omplex for the bosoni
 se
tor in analogy to thefermioni
 one, above. The r�le of c0 for the purely fermioni
 bc-system is now played by thenilpotent operator η0η̄0 : N (p, p̄) → N (p −1, p̄ −1). Therefore [FF91℄, it 
an be interpretedas a 
ohomology operator for the 
omplex

· · ·→ N (p, p̄)
η0η̄0−→ N (p −1, p̄ −1) →··· , (3.6.31)whose grading is measured by JN , sin
e [ JN 0+ J̄N 0 ,η0η̄0] =−η0η̄0. Noti
e, that in prin
iple I
ould de�ne di�erent 
omplexes using other 
ombinations of η0 and η̄0 a
ting on N (p, p̄), forinstan
e η0 + η̄0. However, for the representation spa
es of the gauged A-model the relation

p = p̄ has ne
essarilty to be satis�ed and this restri
ts the 
hoi
e to η0η̄0 up to a prefa
tor.To spe
ify the 
ohomology of η0η̄0, I will now determine the image of this operator.Consider the 
omplement N (p, p)/N (p, p) of N (p, p) in N (p, p). Sin
e N (p, p) denotes theinterse
tion of the kernels of η0 and η̄0 
onsidered independently, this spa
e must not beequal to the kernel of η0η̄0. Indeed, it is just a subspa
e. For instan
e, N (1,1) does notin
lude the states ν−1,0⊗|0,1〉ηξ and ν−0,−1|1,0〉ηξ whi
h are sent to zero by η0η̄0. I will 
all theexpression
NL(p, p)=

(
⊕

l ,s∈Z
A

−
1
2

(l )⊗A
+
ηξ,− 1

2

(l )⊗Ā
−
− 1

2

(s)⊗Ā
+
ηξ, 1

2

(s)

)

η0,η̄0=0

ν−p−1,−p+1|1,1〉 (3.6.32)
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the �logarithmi
 extension� of N (p −1, p −1). With this de�nition I 
an now split
N (p, p)= NL(p, p)⊕N (p, p)⊕R(p, p) ,

R(p, p)=
(
N (p)⊗ N̄L(p)

)
⊕

(
NL(p)⊗ N̄ (p)

)
,

(3.6.33)wherein NL(p) and N̄L(p) signify the holomorphi
 respe
tively antiholomorphi
 half of (3.6.32).One 
an now extra
t the image of η0η̄0, namely
imη0η̄0

(NL(p, p)) = N (p −1, p −1). (3.6.34)Therefore, the p th 
ohomology 
lass of η0η̄0 is
H

p

η0η̄0
= R(p, p) . (3.6.35)This result di�ers from the situation where only the holomorphi
 or antiholomorphi
 partsare 
onsidered. In the 
ase when η0 is taken for the 
ohomology operator, the 
ohomologyof this operator is trivial.As a 
onsequen
e of the following dis
ussion, the lo
al 
ohomology spa
es in the analogueof the Grothendie
k-Cousin 
omplex will, however, not be the 
ohomology spa
es of η0η̄0.

The First GCO δ1In se
tion 2.6.2, I made two formal assumptions on the Grothendie
k-Cousin operators.The �rst was, that it is a mapping between the perturbative spa
es of states if the des
en-ding manifolds have relative 
odimension one. The se
ond was the observation, that theGrothendie
k-Cousin operator is basi
ally a
ting on the �dual part� of the eigenstates of thenaive Hamiltonian. In the Morse theory on CP
1 this was obtained by extending its spe
trumby the missing states with the same quantum numbers. I will make use of this in order topropose that N (1,1) is the appropriate extension, 
f. 34

0→H
in
∞,0

e−→H
in
∞,0 = M+(0,0)⊗N (1,1)

g1−→H
in
0,0 → 0. (3.6.36)I will restri
t my 
onsideration to the holomorphi
 part. The representation N (1) is generatedby the a
tion of N = {η−ne−φ

−
0 , ξ−neφ

−
0 , J−

−n}n<0 on ν−1 ⊗|0〉ηξ. The spe
trum 
an in analogywith the fermioni
 bc-system [FFH+02℄ be framed by the extremal states
ν−

0 |1〉ηξ× •ν−
1 |0〉ηξ

ν−
−1|2〉ηξ× .................... •ν−

2 |−1〉ηξ

ν−
−2|3〉ηξ× ............................... •ν−

3 |−2〉ηξ

ν−
−3|4〉ηξ× ..................................... •ν−

4 |−3〉ηξ
... ...................................... ...
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The horizontal axis is s
aled by the U (1) 
harge of J−(z), while the verti
al axis distinguishesthe 
onformal weights. The states denoted by × are not 
ontained in N (1), and I will nowexplain that they appear due to an extension by the �dual� states. Generalizing the re
ipeof se
tion 2.6.2, those have to be 
hosen su
h that they have the same quantum numbers ashave the extremal states in N (1).An extremal state ν−r |s〉ηξ ∈ N (p), r, s ∈ Z must be subje
t to the 
ondition r + s = p.Moreover, it has 
onformal weight −1
2 r (r −1)+ 1

2 s(s −1). The 
onformal weight is invariantunder r 7→ −r +1 and/or s 7→ −s +1, while the grading is in general not invariant under thosetransformations. The 
ases in whi
h the grading is preserved are values of r and s that solve
r + s = 1. Therefore, dual states in that sense only exist in the representation N (1). I willargue below, that this already 
overs the situation of the gauged A-model. Thus, for p = 1the dual states are exa
tly those, whi
h extend N (1) to N (1).The 
ohomology operator η0η̄0 for (3.6.31) has now the desired properties to be identi�edwith g1. Thus, up to a prefa
tor, whi
h is 
hosen to �t with the results of the following
hapter 4, I set

δ1 = 2 η0η̄0 ◦e , g1 = 2η0η̄0 , (3.6.37)whereby e denotes the extension N (1,1) → N (1,1).
The Second GCO δ2The se
ond GCO already follows from the dis
ussion above. This 
an be seen by a methodthat I owe Edward Frenkel.In se
tion 2.5, I promoted the idea to interpret the GCOs as operators that mimi
 theinstantons. Consequently, an observer on the 
hart L̃X 0,0 and 
al
ulating with states H

in
0,0gets some insight into the perturbative state spa
es around {∞} ∈ X . Be
ause there are noanti-instantons, no states of H

in
0,0 will appear to an observer on L̃X ∞,0.16In order to �see� the instantons that �ow from {0} to {∞}, the observer has to move tothe other hemisphere and 
onsider the states H

in
∞,0, where the instantons introdu
e statesof H

in
0,1, 
f. (3.6.2). This movement should not 
hange the physi
s, and thus is invoked bythe 
omposite mapping x 7→ x̃, µ 7→ −µ, whi
h leaves the a
tion (3.2.10) invariant. Also the�ow equation remains stru
turally the same and turns into (∂z̄ + µ

z̄
)x̃ = 0.There is an additional e�e
t on the state spa
es whi
h 
an not be seen from the a
tion.Considering x 7→ x−1, µ 7→ −µ and the instanton �ow equations, one 
ould 
on
lude that

F
1
∞ →F∞, F0 →F

1
0 , where the states are de�ned as in equations (3.5.16) and (3.5.19), re-spe
tively (in adequate 
oordinates). However, one has to take 
are of the fa
t that the state

16These would be mimicked by the presence of ξ0ξ̄0 in the Hamiltonian.
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spa
es are weighted by exp{
∫

D γ̃− ∗ (ωK )+
∫

n∈H2(X ,Z) γ̃
− ∗ (ωK )}, 
f. eqns. (3.3.1) and (3.3.2).Intuitively, a 
oordinate transformation has to move the disk D to the other hemisphere,whi
h 
an be done by wrapping it on
e around CP

1. Therefore, x 7→ x−1, µ 7→ −µ shouldbe a

ompanied by the transformation ∫
D γ̃∗(ωK ) 7→

∫
D γ̃∗(ωK )+

∫
S2 x̃∗(ωK ), and this adds tothe operator qn 7→ qn+1. The theory is then rather invariant under x 7→ x̃, µ 7→ −µ and anadditional multipli
ation of the transformed spa
es of in-states with q−1.17The se
ond GCO 
an now be derived from δ1. The reason is that if the theory is invariantunder x 7→ x̃, µ 7→ −µ and a multipli
ation of the states with q−1, the globally de�nedHamiltonian must also be invariant under this mapping. Therefore, under this transition,

δ1 7→ δ2 su
h that
δ2 = 2 η̃0 ˜̄η0 ◦e , g2 = 2η̃0 ˜̄η0 . (3.6.38)In that way, δ2 is a
ting on q−1
H

in
0,1 ≃ H

in
0,0. Be
ause the GCOs are stru
turally the same,it is su�
ient to restri
t my investigations to δ1, whi
h I will do in the rest of my thesis.

3.6.4 ConclusionIn (3.6.28) I have summarized the perturbative state spa
es that will serve as the CFT modelfor the representations of the Tb
 with gauge �eld. The �ground� states of the A-model areidenti�ed with
∆0 ≃ ν+0,0 ⊗ν−0,0|0,0〉ηξ , ∆∞ ≃ ν+−1,1 ⊗ν−1,−1|0,0〉ηξ (3.6.39)The Grothendie
k-Cousin operators appear in an extension of the perturbative state spa
esthat is analoguousely to that of pg. 34. If have noted down that extension for δ1 in (3.6.36).The Grothendie
k-Cousin operators add to the Hamiltonian, that has an a
tion on thenonperturbative representations a

ording to pg. 30 :

H = H +g1 +g2 ≃ T 0 = T0 + T̄0 +g1 +g2 . (3.6.40)With these data, I 
on
lude my analysis of the low-energy, nonperturbative Morse theorybehind the gauged A-model. In the following 
hapter, I will extend the fo
us on the quantumme
hani
al operators to the �elds. I will prove that a spe
i�
 logarithmi
 transformation ofthe CSb
 on CP
1 adds the Grothendie
k-Cousin operators to the Hamiltonian and furtherdeforms the stress tensor and �elds. The following analysis again shifts the attention ba
kfrom Morse theory [FLN06, FLN08℄, to �eld theory [VF09℄.

17Because of (2.2.9), the operators are not affected by this transformation of q .
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The A-Model beyond Topology 4In the last 
hapter I have 
onsidered the Morse theory underlying the A-model in the largevolume limit (Tb
). Using the re
ipe of 
hapter 2, I have derived its nonperturbative statespa
es and the Grothendie
k-Cousin operators mapping between them. The representationspa
es have been modelled by a 
onformal supersymmetri
 bc-system (CSb
).One of the main proposals of Frenkel et al. was that, if there 
orresponds a 
onformal�eld theory to the �gauged� Tb
, beyond the topologi
al se
tor it must be a logarithmi

onformal �eld theory [FLN06, FLN08℄. However, they did not push forward their proposaland introdu
e the logarithmi
 CFT. This will be the subje
t in the following and 
on
ludepart one of my thesis. The 
hapter is grounded on and also extends my publi
ation with M.Flohr, [VF09℄.Firstly, I will a

ommodate a method by Fjelstad et al. [FFH+02℄, whi
h allows for alogarithmi
 extension of 
onformal �eld theories. The extension will be su
h that the Virasoroalgebra as well as supersymmetry are preserved and the Grothendie
k-Cousin operators ofse
tion 4.2 are added to the Hamiltonian. The logarithmi
 deformation a�e
ts not only theHamiltonian but also the operator produ
t algebra (OPA) of the �elds and the other modesof the stress tensor. I will dis
uss those e�e
ts and 
on
lude the 
hapter with a proof thatthe logarithmi
 extension implies the extension of the perturbative state spa
es H
in
0,0 and

H
in
∞,0 as des
ribed in se
tion 3.6.3.

4.1 The Method of Logarithmic DeformationFjelstad et al. invented a 
onstru
tive method to deform CFTs to logarithmi
 CFTs [FFH+02℄.The main idea is to enlarge the representation spa
e of any 
hiral (anti
hiral) CFT systema-ti
ally, by introdu
ing additional �eld modes and tensoring their representation spa
e tothe one of the CFT. Thereby, the stress tensor gains an additional term whi
h a
ts on thetensored ve
tor spa
e su
h that some of the Virasoro generators yield higher-dimensional,non-redu
ible representations.
4.1.1 Extension of the FieldsLet C denote some 
hiral algebra of 
onformal �elds and F the 
orresponding representationspa
e with 
onformally invariant highest weight ve
tor |0〉F . I will further require that thereexists a fermioni
 �eld E (z) ∈C of weight one su
h that E0|0〉F = 0 and E (z)E (ω) = 0. Fjelstad
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et al. deform the �elds f (z) ∈C by introdu
ing an odd graded ve
tor spa
e K with operators
ǫ and ρ and a ve
tor |0〉K ∈K , su
h that [ǫ,ρ] = 1K and ρ|0〉K = 0 [FFH+02℄. In order tohave an isomorphism between �elds and states, they de�ne a new �eld e(z)

e(z)= 1F ⊗ǫ−
∫z

E (ω)dω⊗1K ,

∫z

E (ω)dω= E0 log z −
∑

n 6=0

En

n
z−n

(4.1.1)
orresponding to |0〉F ⊗ǫ|0〉K . This �extension �eld� determines a deformation map on f ∈C

f (z) 7→ f (z)= : exp{−ρe(0)} : f (z) , (4.1.2)whi
h extends the algebra of �eld modes by the additional zero modes ǫ and ρ. The a
tionof e on a �eld F (z) = f (z)⊗σ, σ ∈ End(K ), is de�ned by means of the OPE
e(z)F (ω)=

(
−[E , f ]1 log(ω− z)+

∑

n≥1

1

n

[E , f ]n+1

(z −ω)n

)
⊗σ , (4.1.3)wherein [E , f ]n denotes the 
ontribution with pole of order n in the OPE of E with f , i.e.

E (z) f (ω) =
∑

n≥0

[E , f ]n (ω)

(z−ω)n . In parti
ular, the energy momentum tensor gets deformed to
T (z) 7→ T (z) = T (z)+

ρ

z
E (z) . (4.1.4)In my opinion, further extensions of the �elds generating the symmetries of the theoryshould be made, whi
h Fjelstad et al. did not take into a

ount. Namely, for e to make senseas a �eld, ǫ should have the same quantum numbers as E , whi
h imposes further 
onditionson ǫ and ρ. Suppose, for instan
e, that there exists a 
urrent j a

ording to whi
h E hassome 
harge qE . Only if this 
urrent is extended by an additional zero mode

j (z) 7→ j (z)⊗1K +1F ⊗qE
ρ

z
, (4.1.5)the �eld e has a well de�ned 
harge. From the 
ommutation relation of ǫ with ρ then followsthat ρ must have 
harge −qE . These additional extensions are not an integral part in thedeformation by the extension �eld e, however, in the 
ase of the CSb
 this will be the 
ase,
f. se
tion 4.2.

4.1.2 Extension of the Representation TheoryDue to the additional term, the Virasoro algebra has two-dimensional representations on
ertain 
omposite �elds
Ψ f (z) =− : e(z) f (z) : . (4.1.6)Their OPE with the stress tensor yields1

T (z)Ψ f (ω) =
∑

m≥3

[E , f ]m−1

(z −ω)m
+
∆T ( f )Ψ f + [E , f ]1

(z −ω)2
+
∂ωΨ f

z −ω
, (4.1.7)

1I thank J. Fuchs who pointed out to me that I have to use the definition of normal ordering and contraction for

interacting fields, (i.e. fields that have not just one singular term proportional to the identity in the OPE): a(z) : bc :

(ω) =
∮
ω

dζ
ω−ζ (a(z)b(ζ)c(ω)+ (−)Fa Fb b(ζ)a(z)c(ω)) , cf. [DFMS97].
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whi
h means for the state spa
e that the ground state has now a logarithmi
 partner
E∗

0 ǫ · |0〉F ⊗|0〉K , due to [ǫ,ρ]= 1K . Here, E∗
0 is de�ned by [E0,E∗

0 ] = 1.Indeed, this kind of logarithmi
 deformation 
auses an extension of the state spa
es. Let
|0〉 := |0〉F ⊗|0〉K and denote by F

′ the Fo
k representation of C on that ve
tor. Obviously
F ≃F

′. However, by the 
onstru
tion above, there is a new state ǫ|0〉 
orresponding to theextension �eld e, and a representation F
′′ of C thereon. The extended representation spa
e
an be identi�ed with F :=F

′⊕F
′′ and the deformed �elds mix F

′ and F
′′. In se
tion 4.2.5,the spa
e F

′′ will take the r�le of the �dual part� that extends the perturbative state spa
eof the Morse theory behind the A-model.
4.1.3 The Fermionic bc-SystemAs a 
ru
ial example for the A-model, I will now 
onsider the auxiliary ηξ-system of se
tion3.6.2 and apply to it the method of Fjelstad et al. [FFH+02℄.The �elds 
onstituting the vertex algebra are deformed to

ξ(z) 7→ ξ(z) = ξ(z)+ρ log z ,

η(z) 7→ η(z) = η(z) ,

Tηξ(z) 7→ T ηξ(z) =Tηξ(z)+ρ η(z)z−1 ,

jηξ(z) 7→ j
ηξ

(z)= jηξ(z)+ρz−1 −ρ η(z) log z ,

(4.1.8)and extended by the new �eld
e(z)= ǫ−

∫z

η(ω)dω . (4.1.9)The additional �eld modes ρ and ǫ satisfy [ǫ,ρ] = 1K and ρ|0〉K = 0 for some |0〉K ∈ K ,whereby K is an odd graded Ve
tor spa
e. They extend the state spa
e of the originalfermioni
 bc-system M+
ηξ

(0) → M+
ηξ

(0)⊗K , |0〉ηξ 7→ |0〉ηξ ⊗ |0〉K . The CFT de�ned by the�elds above exhibits logarithms in the OPE and a non-degenerate stress tensor
ξ(z)e(ω) = log(z −ω) ,

T ηξ(z)Ψξ(ω) =
0 ·Ψξ(ω)+1

(z −ω)2
+
∂ωΨξ(ω)

z −ω
,

(4.1.10)wherein Ψξ(z) =− : e(z)ξ(z) : is the logarithmi
 partner of the identity operator on M+
ηξ

(0)⊗K .In parti
ular, the extra term in the Hamiltonian
T ηξ 0

= Tηξ 0
+ρ η0 (4.1.11)looks similar to the GCOs if ρ was adjusted to be η̄0 and the ηξ-system was identi�ed withthe auxiliary fermions of se
tion 3.6.2. Before I adapt the deformation to this situation inthe next se
tion, a 
omment on the the OPE of ξ with e is indispensable.
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Due to the logarithm, the 
orrelator of ξ with η yields a multi-valued fun
tion. This 
anbe resolved by in
luding the antiholomorphi
 se
tor and restri
ting the variable z̄, usually
onsidered to be independent from z, to be the 
omplex 
onjugate. Thus, the observationin the last 
hapter, that the GCOs mix up the holomorphi
 and antiholomorphi
 parts ofthe CSb
, �ts with a typi
al situation in a CFT whi
h exhibits logarithms in OPEs. Thedeformed fermioni
 bc-system 
anoni
ally demands that the holomorphi
 and antiholomor-phi
 parts are 
onsidered together. Still, for 
onvenien
e I will often restri
t my dis
ussionto the holomorphi
 �half�.Moreover, the logarithm in the OPE of e with ξ 
auses that Möbius 
ovarian
e is broken.Indeed, under (z,ω) 7→ eλ(z,ω), λ 6= 0, I �nd that ξ(z)e(ω) 7→ log (eλ(z −ω)) 6= ξ(z)e(ω). Thissigni�es that e 
an not enter the 
onformal �eld theory as an additional dynami
al �eld. Itjust serves to deform the �eld algebra and to extend the representation spa
es.
4.2 Introducing the GCOsI will now dis
uss, how the bosons of the CSb
 
an be logarithmi
ally extended in a way, su
hthat the Hamiltonian and extended representation spa
es 
over the situation of the Morsetheory behind the A-model, 
f. 
hapter 3. From se
tion 3.6.2 it is already 
lear that thedeformation has to be applied to the bosons of the CSb
. Above, I have further motivatedthat the auxiliary fermions will be the main 
hara
ters.In the following se
tion, I will propose a spe
i�
 logarithmi
 extension e and analyze itse�e
ts on the �eld algebra. The Hamiltonian will turn out ni
ely, and I will �ll in themissing argument why the logarithmi
 deformation breaks the bosoni
 axial symmetry andthe symmetry generated by JN , 
f. (3.6.26).Se
tion 4.2.5 
on
ludes this analysis. Therein, I will explain that the �eld e does not onlydeform the �eld algebra but also extends the representation spa
e in a way, su
h that theresults of the last 
hapter are reprodu
ed.
4.2.1 Extension of the FieldsIn order to introdu
e the Grothendie
k-Cousin operator g1, I �x the representation of thebosoni
 bc-system to be N (1,1). The se
ond GCO 
an be obtained after a 
hart transitionof the CSb
 to the other hemisphere and just in the same manner as des
ribed below.
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The GCOs are mixing holomorphi
 and anti-holomorphi
 (target-spa
e) 
oordinates. There-fore, I set K = M̄+
ηξ

(0), K̄ = M+
ηξ

(0) and de�ne the additional �elds
e(z)=e−φ̄

−
0

(
1M+

ηξ
⊗ ξ̄0 −

∫z

η(ω)dω⊗1M̄+
ηξ

)
,

ē(z̄) =eφ
−
0

(
ξ0 ⊗1M̄+

ηξ
−1M+

ηξ
⊗

∫z̄

η̄(ω̄)dω̄

)
.

(4.2.1)By this means, the holomorphi
 part is extended by the antiholomorphi
 part and vi
eversa. Having introdu
ed the �eld modes eφ
−
0 and e−φ̄

−
0 does not only extend N (1,1) in thedesired way, but it is also ne
essary be
ause it is now a bosoni
 system to whi
h I apply thedeformation.De�ning the �eld transformations as

f (z, z̄) 7→ f (z, z̄)=: exp
[
−e(0) ·eφ̄

−
0 η̄0 −e−φ

−
0 η0 · ē(0)

]
: f (z, z̄) , (4.2.2)the stress tensor of the ηξ-system is deformed to

T ηξ(z, z̄) =
(

Tηξ(z)+
1

z
η(z)η̄0

)
+

(
T̄ηξ(z̄)+

1

z̄
η0η̄(z̄)

)
. (4.2.3)The deformation further implies

T ηξ n
+ T̄ ηξ n

= Tηξ n
+ T̄ηξ n

+ηn η̄0 +η0η̄n (4.2.4)on the �eld modes and leads to the desired result (3.6.40). As I have already mentioned,not only the Hamiltonian but also the other modes of the Virasoro generator are deformed.This e�e
t is invisible in the Morse theory des
ription, and I will therefore dis
uss some
onsequen
es at the end of this 
hapter. In the following, I will refer to the deformationterms in the stress tensor as �Grothendie
k-Cousin �elds�, whi
h I will denote by
g1(z) =

1

z
η(z)η̄0 , ḡ1(z̄) =

1

z̄
η0η̄(z̄) . (4.2.5)In addition, the transformation a�e
ts the bosoni
 �elds in N (1,1)

b−(z) =V −(−, z)⊗
(
∂zξ(z)− η̄0z−1

)
, b̄

−
(z̄) = V̄ −(+, z̄)⊗

(
∂z̄ ξ̄(z̄)+η0 z̄−1

)

c−(z) =V −(+, z)⊗η(z) , c̄−(z̄)= V̄ −(−, z̄)⊗ η̄(z̄)
(4.2.6)and

T −(z)= T −(z)+g1(z) , T̄
−

(z̄) = T̄ −(z̄)+ ḡ1(z̄) ,

j
ηξ

(z) = jηξ(z)− log z η(z)η̄0 , j̄
ηξ

(z̄) = j̄ηξ(z̄)+ log z̄ η0η̄(z̄) ,

J−(z, z̄) = J−(z, z̄) , Q(z, z̄) =Q(z, z̄) ,

(4.2.7)whereas the super
harge Q(z, z̄) =Q(z)+Q̄(z̄), Q(z) =V +(−, z)⊗η(z)V −(+, z) is not deformed,
f. eqn. (3.6.29). Hen
e, the topologi
al se
tor of the theory is insensible to this pro
edure.
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In addition, the zero mode of the ve
torial 
urrent J−
V
= (J−+ J̄−)+( j

ηξ
+ j̄

ηξ
) is not 
orre
ted,whi
h means that it still measures the same quantum numbers as the undeformed one.This is not only an in
idental remark, there is another reason why the ve
torial 
urrent ispreferential. As explained before, for e and ē to have well de�ned 
harges, the holomorphi
and antiholomorphi
 
urrents have to be generalized. Consider the a�e
ted holomorphi
auxiliary 
urrent jηξ. The 
harge of ξ̄0 is measured by j̄ηξ and yields the same value as the
harge of η under jηξ. Therefore, it must be 
ompleted by the antiholomorphi
 
urrent insu
h a way, that the total auxiliary 
urrent is ve
torial. Sin
e the auxiliary 
urrent is 
oupledto J− via (3.6.23), this is inherited by J−. This explains my 
laim that for the parti
ulardeformation above, the extension of the symmetry generating �elds and the extension by

e, ē is the same.In order to further spe
ify my 
omments on the symmetries of the deformed theory, Iwill now dis
uss how the logarithmi
 deformation indeed breaks all symmetries whose gene-rators 
ontain the axial 
urrent of the auxiliary ηξ-system. Moreover, I will 
onsider ifsupersymmetry and the Virasoro algebra are a�e
ted.
4.2.2 Notes on the SymmetriesThe axial symmetry of the auxiliary system is broken by the presen
e of the deformationterm in the Hamiltonian. To see this, I 
al
ulate the 
ommutator

∮
dz [η0η̄0, j

ηξ
(z)]±

∮
dz̄ [η0η̄0, j̄

ηξ
(z̄)] =−η0η̄0 ±η0η̄0 . (4.2.8)Therefore, only the zero mode of the ve
torial 
urrent 
ommutes with the deformed Hamilto-nian, whereas this fails for the axial symmetry. This 
on
ludes the proof that the 
urrents JNof eqn. (3.6.26) and J−−J̄− of eqn. (3.6.23) do not 
omprise symmetries of the logarithmi
allydeformed CSb
.On the other hand, this is not true for supersymmetry and 
onformal symmetry. Thereason is that besides in the expression j

ηξ
, only derivatives of the �eld ξ enter the extended�eld algebra. Sin
e all deformation terms are proportional to zero modes of η(z) and η̄(z̄),the logarithmi
 extension does not spoil the 
ommutation relations and, hen
e, preservesupersymmetry and the Virasoro algebra.The absen
e of ξ has two further 
onsequen
es that I will now dis
uss.

4.2.3 Exceptional Logarithmic PartnersA �rst 
onsequen
e is that the �eld Ψb− (z) =− : e(z)b−(z) : has no logarithmi
 partner,2
T −(z)Ψb− (ω) =

e−φ̄
−
0 V −(−,ω)

(z −ω)3
+
∂ωΨb− (ω)

z −ω
. (4.2.9)

2Due to the anomaly of the holomorphic current jηξ, (4.1.7) does not apply and one has to derive the OPE by hand.
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On the other hand, Ψ jηξ(z) =− : e(z) jηξ(z) :, and other 
ombinations : φ(z)Ψ jηξ(z) :, φ a �eldin the CSb
, have logarithmi
 partners. In parti
ular,
T (z)Ψ jηξ(ω) =

−e(ω)

(z −ω)3
+
Ψ jηξ(ω)+∂ωe(ω)

(z −ω)2
+
∂ωΨ jηξ(ω)

z −ω
. (4.2.10)This turns the logarithmi
ally deformed CSb
 into an ex
eptional 
ase among logarithmi

onformal �eld theories. Namely, itsU (1) 
urrent breaks the SL(2,C) symmetry and therefore,the logarithmi
ally deformed CSb
 is an example for an LCFT whose basi
 Jordan blo
k isnot a primary �eld [Flo03, pg. 4516℄.

4.2.4 On the Necessity to Deform the FermionsIn se
tion 4.1 I have 
onsidered the ηξ-system in its own right and argued that the extension�eld e should not be part of the dynami
al �elds be
ause it breaks Möbius 
ovarian
e. Sin
e
ξ is not a �eld in the vertex algebra of the bosonized bosons, I 
an not ex
lude e and ē fromthe dynami
al �elds by this argument. However, if I treated them as additional dynami
al�elds in the CSb
, I would expe
t that I also have to logarithmi
ally deform the fermioni
se
tor, in order to supply the extension �elds with their supersymmetri
 partners. I denotethe fermions as in the last 
hapter by b+ and c+, an extension as des
ribed in se
tion 4.1.3
an be performed

e+(z) = b̄+
0 −

∫z

c+(ω)dω , ē+(z̄) = b+
0 −

∫z̄

c̄+(ω̄)dω̄ ,

f +(z, z̄) 7→ f +(z, z̄) =: exp
[
−e+(0)c̄0 −c+0 ē+(0)

]
: f +(z, z̄)

(4.2.11)and the zero modes of the bosoni
 and fermioni
 extension �elds are related by supersym-metry
[Q0,eφ

−
0 ξ0] = e−φ

+
0 ≃ b+

0 , [Q0,e−φ
+
0 ] = eφ

−
0 ξ0 . (4.2.12)However, eqn. (4.1.10) forbids that e+ and ē+ 
an be 
onsidered as dynami
al �elds in thefermioni
 se
tor. Therefore, it is again impossible to interpret e and ē as dynami
al �elds inthe CSb
.Sin
e supersymmetry was already preserved without deforming the fermions, it is notdemandatory that the fermions are logarithmi
ally extended. On the other hand, to the bestof my knowledge there is nothing to be said against it, and I will argue below that, if thereader wishes to logarithmi
ally extend the fermions, this will not a�e
t the representationtheory of the CSb
 and thus the results of 
hapter 3.

4.2.5 Extension of the State SpaceAlthough ξ(z), ξ̄(z̄) are not part of the dynami
al �elds, the zero modes ξ0 and ξ̄0 areintrodu
ed by the extension �elds e, ē and thus extend the state spa
e. I will now prove
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that the extension is as in equations (2.6.2) and (3.6.36):
N (1,1)

e,ē−→ N (1,1)
g1−→ N (0,0) . (4.2.13)Firstly, I will restri
t my 
onsiderations to the auxiliary ηξ-system in order to illustrate twoaspe
ts. As stated above, this will show that a logarithmi
 deformation of the fermions inthe CSb
 does not interfere with the extension of the representation spa
es. Furthermore,the essential r�le of the 
oupling between the bosonized bosons and the auxiliary fermionswill be
ome evident. Se
ondly, I will explain how the logarithmi
 extension indeed leads to(4.2.13). By an expli
it 
al
ulation of the a
tion of the Grothendie
k-Cousin �elds on thatextended spa
e, I will substantiate the impa
t of the additional �eld modes that are invisiblein the Morse theory des
ription.A

ording to the deformation rule (4.2.2), the �elds e, ē and their 
omposite eē extend theground state |0,0〉ηξ of the ηξ-system by the new states ξ0|0,0〉ηξ, ξ̄0|0,0〉ηξ and ξ0ξ̄0|0,0〉ηξ.This extends the representation spa
e as des
ribed in se
tion 4.1,

⊕

l ,r

A
+
− 1

2

(l )⊗Ā
+
1
2

(r ) →
(
⊕

l ,s

A
+
− 1

2

(l )⊕A
+
− 1

2

(s −1)

)
⊗

(
⊕
r,m

Ā
+
1
2

(r )⊕Ā
+
1
2

(m +1)

)
. (4.2.14)In parti
ular, the logarithmi
 partners are modelled on the representation spa
e with highestweight state ξ0ξ̄0|0,0〉ηξ,

T ηξ 0
|1,1〉ηξ = 0 · |1,1〉− |0,0〉ηξ , (4.2.15)while T ηξ 0

is diagonal on the other representations. Therefore, one would naively assumethat the logarithmi
 extension of the original state spa
e equals M+
ηξ L

(1,1) =
⊕

l ,s (A +
− 1

2

(l−1)⊗

Ā
+
1
2

(s+1)), in analogy with the bosonized bosons eqn. (3.6.32). This state spa
e is, however,isomorphi
 to the one de�ned by the partner �elds, ⊕
l ,s A

+
− 1

2

(l )⊗ Ā
+
1
2

(s), be
ause ξ0 and ξ̄0are part of the �eld algebra. This is the reason, why the ηξ-system alone is not 
apable ofexplaining the di�erent nature of H
in
0,0 and H

in
∞,0.Fortunately, the extension of the state spa
e of the full supersymmetri
 bc-system is more
ompli
ated be
ause the algebra of the auxiliary fermioni
 �eld does not fa
torize. The newhighest weight states, introdu
ed by e and ē, are rather

eφ
−
0 ξ0

e−φ̄
−
0 ξ̄0

eφ
−
0 −φ̄−

0 ξ0ξ̄0





·ν−1,−1 ⊗|0,0〉ηξ =





ν−0,−1 ⊗|1,0〉ηξ
ν−1,0 ⊗|0,1〉ηξ
ν−0,0 ⊗|1,1〉ηξ

, (4.2.16)and the extension �elds �ll in the missing states in the diamond (3.6.27). The algebra of�eld modes
⊕

l ,s∈Z
A

−
1
2

(l )⊗A
+
ηξ,− 1

2

(l )⊗Ā
−
− 1

2

(s)⊗Ā
+
ηξ, 1

2

(s)

∣∣∣∣∣
η0,η̄0=0

(4.2.17)
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is now represented on those states, and
N (1,1)

e,ē−→ [N (1)⊕NL(1)]⊗ [N̄ (1)⊕ N̄L(1)] = N (1,1) , (4.2.18)wherein the logarithmi
 extension NL(1,1) of N (0,0) appears, 
f. eqn. (3.6.32).
The Action of the Grothendieck-Cousin OperatorI 
an now substantiate the a
tion of T ηξ on NL(1,1)⊗R(1,1), 
f. se
tion 3.6.2. Therefore, I
onsider the states

χ(l)
0 :=O (J−)ηr1

· · ·ηri
ξk1

· · ·ξk j
·νi− j+1|0〉ηξ ,

χ(l)
1 :=O (J−)ηr1

· · ·ηri
ξk1

· · ·ξk j
·νi− j |1〉ηξ ,

r1 < ·· · < ri < 0, k1 < ·· · < ki < 0, l = i − j ,

(4.2.19)wherein O (J−) is a monomial in J−
−n , n > 0. They are elements of the Virasoro module with�xed 
harge l + 1

2 , measured by J−
0 .3 I will denote these modules by N (1)l and NL(1)l , respe
-tively, whi
h immediately generalizes to the 
ompositions N (1,1)l ,l̄ , NL(1,1)l ,l̄ and R(1,1)l ,l̄by means of

χ(l ,l̄ )
s,s̄ := χ(l)

s ⊗ χ̄(l̄ )
s̄ , s, s̄ ∈ {0,1} . (4.2.20)The a
tion of T ηξ n

= Tηξ n
+ηn η̄0 on su
h states is as follows.For the zero mode, whi
h is the Grothendie
k-Cousin operator, I obtain

T ηξ 0
·χ(l ,l̄ )

s,s̄ = Eχ ·χ(l ,l̄ )
s,s̄ −N N̄ χ(l ,l̄ )

0,0 , (4.2.21)where I used N := (−)i+ī+ j+ j̄δs,∞ and N̄ := (−)i+ī+ j+ j̄δs̄ ,∞. The deformed Hamiltonian isnon-diagonal only on the states in NL(1,1), as I have already dis
ussed in se
tion 3.6.3.For the other modes of the stress tensor with n 6= 0, I �nd
T ηξ n

·χ(l ,l̄ )
s,s̄ = Tηξ n

·χ(l ,l̄ )
s,s̄ + (−)s

N̄ ηn ·χ(l ,l̄ )
s,0 , (4.2.22)and T ηξ n

is in general not diagonal if the states are in R(1,1)⊕NL(1,1).For all modes of the Virasoro �eld it is true that the ground state ν−1,−1|0,0〉ηξ is not sensiblefor the logarithmi
 extension, as it is annihilated by all modes of the Grothendie
k-Cousin�eld.
3The value of 1

2 is due to the fact that I consider solely the holomorphic part.
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4.2.6 ConclusionI have logarithmi
ally deformed the CSb
 in su
h a way that it in
ludes the situation of theMorse theory behind the A-model in the large volume limit. Thereby, also the �elds andtheir OPA was deformed, and I have dis
ussed the e�e
ts on the symmetries of the CSb
.In parti
ular, the stress tensor obtained improvement terms
T (z, z̄) = T (z, z̄)+g1(z, z̄)+g2(z, z̄) ,

g1(z, z̄) = η(z)η̄0 +η0η̄(z̄) , g2(z, z̄) = η̃(z)¯̃η0 + η̃0
˜̄η(z̄) ,

(4.2.23)whi
h I 
alled Grothendie
k-Cousin �elds. Above, I in
luded the se
ond of these �elds thatis determined by a 
hart transition. The Grothendie
k-Cousin operators break the bosoni
axial symmetry, as well as the symmetry JN whi
h distinguishes the 
hains in the 
omplexof extended bosoni
 representation spa
es, 
f. se
tion 3.6.3. For this reason, the states in
NL(1,1) and the 
orresponding �elds 
an be interpreted as the logarithmi
 partners of thestates and �elds in the representation N (0,0).
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Summary and Conclusion 5In my �rst part of this thesis I have investigated the geometri
 signi�
an
e of the improve-ment terms in the Hamiltonian of the logarithmi
 
onformal bc-system with target X =CP
1.Taking the perspe
tive of its underlying Morse theory on loop spa
e, I may now 
on
ludethe following.The zero modes of the improvement terms are the in�nite dimensional analogues of lo
al
ohomology operators (Grothendie
k-Cousin operators � GCOs) in a 
omplex of extendedrepresentation spa
es of the Hamiltonian, whereby extension means that the representa-tion spa
es are extended by their missing dual part in the sense dis
ussed in se
tion 2.6.2.Therefore, the logarithmi
 
onformal bc-system on CP

1 is a �eld theoreti
 appli
ation of theGrothendie
k-Cousin 
omplex as 
onsidered by G. Kempf [Kem78℄, an interpretation alreadydis
ussed by Frenkel, Losev and Nekrasov in [FLN08℄.The same authors interpreted the extension as the transition from perturbative to non-perturbative state spa
es, by whi
h the zero modes of the improvement terms gain a se
ondinterpretation. They mimi
 the instantons be
oming visible in the dynami
al se
tor of thetheory. This interpretation is in addition promoted by the fa
t that the GCOs are mappingsin a spe
i�
 dire
tion, whi
h is determined by a �ltration of the lo
al representation spa
es.This dire
tion 
onforms with the dire
tion into whi
h the instantons �ow with growing time.I will now brie�y summarize the steps I have taken.
Morse Theory and Induced Representations In 
hapter 2, I have 
onsidered Morsetheory on a 
ompa
t Kähler manifold X , 
f. [FLN06℄. It was ne
essary to 
onstrain X in orderto guarantee that a non-empty topologi
al se
tor would exist. After several transformationswhi
h left the topologi
al se
tor invariant, I 
ould massage the a
tion into a �rst order form,su
h that the path integral would manifestly lo
alize on the instantons. In parti
ular, thisspoiled CPT invarian
e and the transformed theory lost its former unitarity.The spe
iality of this Morse theory has been that the metri
 was s
aled with some positive,real-valued parameter λ, and that, hen
e, it got possible to move in the moduli spa
e of thetheory. Two phases of Morse theory have been of spe
ial importan
e, the phase when λ 6=∞and the large volume limit λ→∞. For �nite λ, the representation spa
es of the Hamiltonianare isomorphi
 to the representation spa
es of the unitary theory. In the large volume limitit is not possible to make su
h a statement in general, besides for the topologi
al se
tor,whi
h is insensitive to the value of λ.
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The most important impa
t of the s
aled metri
 was that the perturbative spe
trum of theHamiltonian in
luded apart from the topologi
al further dynami
al states. For the situationthat the target manifold is X =CP
1, these perturbative state spa
es survived the large volumelimit and be
ame indu
ed representations of the symmetry generated by the gradient �eldof the Morse fun
tion.The perturbative representation spa
es were de�ned lo
ally on the so-
alled des
endingmanifolds. These are the submanifolds into whi
h X is de
omposed by means of the gradientve
tor �eld. Frenkel et al. 
laimed that if the lo
al representation spa
es were extended asdistributions to X , they did 
omprise the nonperturbative low energy spe
trum of the theory,
f. [FLN08℄. I have extended the perturbative spe
trum in a manner whi
h di�ers from thatused by Frenkel et al. [FLN06℄. The Hamiltonian turned out to be no longer diagonalon the thus obtained representation spa
es. I did then de
ompose it into a trivial partand an operator whi
h is responsible for that e�e
t. The thus obtained operator entang-led the extended representation spa
es and, by 
omparison, 
ould be identi�ed with thelo
al 
ohomology operator (GCO) of a parti
ular Grothendie
k-Cousin 
omplex [Kem78℄.Therefore, the GCO makes it possible to take an insight into the stru
ture of the indu
edrepresentations of the symmetry generated by the gradient �eld of the Morse fun
tion. Inparti
ular, this is an insight into the ex
ited spe
trum of the Morse theory and thus an e�e
tbeyond the topologi
al se
tor.Due to the GCO the Hamiltonian is inde
omposable on 
ertain dynami
al states and alsomixes the holomorphi
 and antiholomorphi
 target spa
e 
oordinates. These aspe
ts aretypi
al for logarithmi
 
onformal �eld theories and it is, hen
e, reasonable to generalize this
on
ept to two-dimensional �eld theories, [FLN08℄.

A Field Theory Application In 
hapter 3 I have 
onsidered the A-model with domainmanifold Σ = R×S1 and target spa
e X = CP
1. The target spa
e was again supplementedwith a metri
 s
aled by λ, 
f. [FLN08℄. Sin
e many physi
ists and mathemati
ians assumethat there exists a point in the moduli spa
e of this theory where it is 
onformal [FL07,MSV99, DVV91℄, it was a good starting point for generalizing the dis
ussion of the last
hapter to a �eld theory and, additionally, for analyzing the meaning of the Grothendie
k-Cousin operators in a 
onformal �eld theory.As in the situation of Morse theory, I transformed the A-model into a �rst order shapeby breaking CPT invarian
e and taking the large volume limit. Under this treatment, theA-model took the form of a supersymmetri
 bc-system whi
h I 
alled the �topologi
al bc-system� (Tb
). Stru
turally, it looks like the 
onformal supersymmetri
 bc-system (CSb
),and I assumed that the representation theory for both systems is the same.Having integrated out the dependen
e of S1, the Tb
 turns into an in�nite sum of superquantum me
hani
al theories on loop spa
e LX , whi
h look similar to the Morse theory
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onsidered before. In order to attain the full analogy, it was ne
essary to add another ve
tor�eld to the gradient ve
tor �eld, whi
h ensured that the 
riti
al manifold redu
ed to singularpoints. Like Frenkel, Losev and Nekrasov [FLN08℄, I have 
alled this pro
edure as �gauging�and denoted the thus obtained Tb
 as the gauged Tb
. Moreover, in order to obtain a Morsefun
tion for the gradient ve
tor �eld it was ne
essary to lift the theory from loop spa
e toits universal 
over.The Morse fun
tion thus obtained was multi-valued on loop spa
e. Therefore, the preim-ages of LX in its universal 
over fanned out into in�nitely many leaves, distinguished byhomology 
lasses in H2(X ,Z). In the same manner, the perturbative state spa
es and thedes
ending manifolds were distinguished. However, the state spa
es were isomorphi
, and I
ould restri
t my 
onsideration to one of those se
tors.Analyzing the Hessian of the Morse fun
tion, I 
ould determine the 
oordinates of thedes
ending manifolds in this se
tor. Be
ause of the analogy to the Morse theory of 
hapter2, I then 
ould note down the perturbative representation spa
es whi
h lo
alize on thesesubmanifolds. It turned out that they 
ould be modeled by representation spa
es of theCSb
.In order to de�ne the CSb
 on X =CP
1 it was ne
essary to explain how 
hart transitionswork, and I introdu
ed the 
hiral de Rham 
omplex [MSV99℄ to 
lose this gap.To determine the Grothendie
k-Cousin operators, I had to �nd the lo
al representationspa
es between whi
h su
h operators intermediate. As it turned out, there exist two su
hoperators whi
h, however, are related by a 
hart transition 
omposed with a rede�nitionof the additional ve
tor �eld I had used to redu
e the 
riti
al manifold to isolated points.Therefore, it was su�
ient to dis
uss only one Grothendie
k-Cousin operator.In order to obtain this GCO, I assumed that I may substitute the CSb
 for the A-model.Having adjusted and generalized the method of 
hiral bosonization [FMS86℄, I 
ould derivea 
ohomology operator in a long exa
t sequen
e of parti
ular state spa
es. The perturbativestate spa
es of the Tb
 are part of this sequen
e, and I 
ould extend them in su
h a way thatthe GCOs have been extra
ted as the 
ohomology operators in the short exa
t sequen
esof perturbative state spa
es. Thise GCOs deform the Hamiltonian of the CSb
 and arenon-diagonalizable on a subspa
e of dynami
al state spa
es.In the last 
hapter I dis
ussed the question whi
h deformation of the CSb
 
orrespondsto the deformation of the Hamiltonian by the Grothendie
k-Cousin operator [VF09℄.

Logarithmic Deformation of the Chiral de Rham Complex The GCOs made it ne
es-sary to re
onsider the 
hiral de Rham 
omplex. I looked for a logarithmi
 extension of thistheory whi
h would produ
e the GCOs within the Hamiltonian and extend the state spa
es
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in the appropriate way. For this purpose, I have su

essfully a

ommodated the method oflogarithmi
 deformation invented by Fjelstad et al. [FFH+02℄.Sin
e it must be applied to the bosoni
 subse
tor of the CSb
, this raised the questionif, due to supersymmetry, it was not ne
essary to further deform the fermioni
 part. I haveargued that supersymmetry did not demand this. Nevertheless, if the fermioni
 part is inaddition logarithmi
ally deformed, this does not a�e
t the representation theory of the CSb
.Moreover, the logarithmi
 deformation did neither destroy the Virasoro algebra nor super-symmetry. Yet, it spoiled all anomalous symmetries by whi
h the Tb
 ex
eeded the A-modelwith �nite values of λ. I 
onsider this as an additional 
on�rmation that the logarithmi
deformation of the 
hiral de Rham 
omplex might be ne
essary, if the dynami
al se
tor ofthe Tb
 is taken into a

ount.Another interesting aspe
t has been that the basi
 Jordan blo
ks in the doublets of loga-rithmi
 partners are always 
omprised by �elds whi
h are not primary. In this respe
t, thetheory is ex
eptional among logarithmi
 
onformal �eld theories [Flo03℄.

84



II

Conformal Fermionic Ghosts on the
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Motivation 6In the last part of my thesis I have investigated the 
onformal supersymmetri
 bc-systemwith target manifold CP
1. Under the assumptions that this theory des
ribes the topologi
alA-model in the large volume limit and that it has a parti
ular nonperturbative spe
trum onthe des
ending manifolds of its underlying Morse theory, it be
ame ne
essary to logarith-mi
ally deform this CFT. The improvement terms in the stress tensor thereby inherited aninterpretation as lo
al 
ohomology operators and of instanton 
ontributions.This time I will 
onsider a di�erent geometri
 setting, whi
h again gives rise to a log-arithmi
 extension, now of the fermioni
 
onformal bc-system.1 In this setting, the CFThas target spa
e C, whereas the domain manifold is an algebrai
 surfa
e T

n,m with globalmonodromy group Zn as a bran
hed 
overing of CP1. This situation has been dis
ussed byV. Knizhnik [Kni87℄ for the non-logarithmi
 situation, and extended to the triplet model, in
ase that Tn,m is the torus, by M. Flohr [Flo98℄. The triplet model [Kau95, GK96, Gab03℄, isnot the same LCFT as the one I have dis
ussed in the 
ontext of the A-model. It in
ludes thesituation of the last 
hapter but also ex
eeds it, in parti
ular it 
ontains additional twistedrepresentations whi
h mimi
 the bran
h points.In the following 
hapters I will dis
uss two topi
s related with this setting. Firstly, I willargue from a purely geometri
 point of view that a logarithmi
 extension of the bc-systemon the torus is unavoidable. Se
ondly, sin
e the torus is the spe
tral 
urve of pure gauge,
SU (2) Seiberg-Witten (SW) theory [SW94℄, I will redu
e the prepotential and the spe
tral
urve of this theory to quantities in the triplet model [VF07℄.In 
hapter 7 I will introdu
e the bc-system on the algebrai
 surfa
es T

n,m along the linesof [Kni87℄. The monodromy group will be responsible for additional, twisted representationswhi
h mimi
 the bran
h points.In the following 
hapter 8, I will restri
t my 
onsiderations to the 
ase that the algebrai
surfa
e is a torus. Sin
e the twisted representations mimi
 the bran
h points, there will exista geometri
 argument why the bc-system must be logarithmi
. This works by relating theLegendre family, whi
h is a one parameter family of tori, to the nullve
tor 
ondition of thetwist �elds. The minimal logarithmi
 CFT 
ontaining these representations is the tripletmodel whi
h I will brie�y introdu
e.The last 
hapter 9 will be on pure gauge, SU (2) Seiberg-Witten theory. After some intro-du
tionary remarks, I will explain how its spe
tral 
urve 
an be expressed in terms of triplet
1Since I will only treat this theory in the following, I will often refer to it as “the bc-system”.
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hara
ters and how the prepotential 
an be obtained as a fun
tion of the torus modulus.Sin
e this modulus equals the ratio of the four-point fun
tions of the twist �elds it is pos-sible to determine the prepotential, and therefore this parti
ular Seiberg-Witten theory, bymeans of quantities of the triplet model.
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Fermionic Ghosts on Algebraic Curves 7In this 
hapter I will summarize how Knizhnik formulates the 
onformal fermioni
 bc-systemon a spe
i�
 
lass of algebrai
 surfa
es whi
h are bran
hed 
overings of CP1, [Kni87℄. Theirmonodromy group a
ts on the �elds whi
h thereby fall into irredu
ible representations. Thehighest weight ve
tors of those representations 
an again be related with 
onformal (twist)�elds that simulate the e�e
ts of the bran
h points.
7.1 The Algebraic SurfacesEvery 
ompa
t Riemannian surfa
e 
an be obtained from a zero set of some polynomial intwo variables by an in
lusion of �nitely many points [Fre09℄. Therefore, I will trade su
halgebrai
 surfa
es for 
ompa
t Riemannian surfa
es in the following. Parti
ularly, I aminterested in the 
lass of polynomials

T
n,m =

{
(y, x) ∈C× (CP1 \ {ei }) : P(y, x) = yn −

nm∏

i=1

(x −ei )= 0

}
, n,m ∈N , (7.1.1)with ei 6= e j , ∀i 6= j , and in those des
ribing ellipti
 
urves, subje
t to the restri
tion n = 2and m = 2. I am parti
ularly interested in the ellipti
 
urves, be
ause they be
ome tori when
ompa
ti�ed and the spe
tral 
urve of pure gauge Seiberg-Witten theory with SU (2) gaugegroup is a torus.The proje
tion p : (y, x) 7→ x, yields a 
overing (lo
ally biholomorphi
 mapping) of Σ =

CP
1 \ {ei } by T

n,m, and the Monodromy group has a global representation on di�erentialforms on Σ due to the global Zn symmetry. In an open neighborhood U (e) of a bran
h point
e ∈ Σ, there exists an open set V (e) ⊂ p−1(U (e)) and biholomorphi
 mappings φV and φ̃U ,su
h that the following diagram 
ommutes, [Fre09℄

T
n,m : V (e)

φV→ D∗ z

p ↓ ↓ p̃ ↓

Σ : U (e)
φ̃U→ D∗ zn

. (7.1.2)Hereby, D∗ denotes the unit disk without the point e, whi
h I set to 0 without loss ofgenerality. Therefore, in a neighborhood of a bran
h point e, the 
overing looks like p̃(z) =
e + zn with inverse

p̃−1(z)= (z −e)1/n . (7.1.3)By (z−e)1/n I denote the whole sta
k of the n solutions to this equation, and whi
h I label by
l mod n, l ∈N. Whenever I want to distinguish a spe
ial root, I will denote it by (z−e)1/n|Vl

.
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When 
ompa
tifying the algebrai
 
urve, the mapping φV is analyti
ally extended to thesymbol p−1(e) by setting φV (p−1(e)) = 0. For this reason, though it is not quite 
orre
t, Iwill 
all (V (e),φV ) a 
hart around p−1(e).In the following I will des
ribe how Knizhnik introdu
es the fermioni
 bc-system on theleaves of the 
overing and how the bran
h points introdu
e a sta
k of lo
al representationsof the theory on additional ba
kground �elds.
7.2 The Fermionic bc-System on T

n,mKnizhnik de�nes a fermioni
 bc-system on the algebrai
 surfa
e T
n,m. It 
onsists of a s
alar�elds b and a one-form c whi
h he 
onsiders in the representation on |0〉, 
f. se
tion 3.4.1.These �elds des
ribe the purely holomorphi
 (and purely antiholomorphi
) di�erential formson the surfa
e.1 Due to the lo
al biholomorphism, one 
an 
onsider these �elds on thedi�erent sheets l and in lo
al 
oordinates z on Σ. For instan
e b(l)(z) = b ◦p−1|Vl

(z), where
Vl is an open subset of the l th sheet, not in
luding a bran
h point.2 Similar holds for theone-form c. These �elds have an a
tion whi
h due to the lo
al biholomorphisms 
an beformulated on Σ

S(l) =
∫

Σ

d2z c (l)(z)∂z̄ b(l)(z) . (7.2.1)A

ordingly, the total state spa
e is a tensor produ
t of n equivalent highest weight states,in parti
ular
|0〉 =

n−1⊗

l=0

|0〉l . (7.2.2)On every sheet, the stress tensor is de�ned as in se
tion 3.4.1 and the same holds for the�elds. In parti
ular, their operator produ
t expansion yields
b(l)(z)c (l ′)(z ′) =

δl ,l ′

z − z ′ . (7.2.3)

7.2.1 Around the Branch PointsSin
e analyti
 transitions between all sheets are possible in a 
hart around a bran
h point,this situation is more deli
ate. To visualize this, I depi
ted the Riemannian surfa
e of pz,below.
1I will only consider fermionic fields b and c in this part of my thesis. Therefore, I will omit the index + used in section

3.4.1.
2In a chart I will allow myself the abuse of notation to equivalently denote by z a local coordinate onΣ or its preimage

on T
n,m .
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Let U (e) be a neighborhood of a bran
h point e. Thedi�erent paths between the sheets, along whi
h fun
-tions on T
n,m 
an be analyti
ally 
ontinued, 
an be
lassi�ed by means of the monodromy group relatedto e. It is de�ned as follows.Let γ ∈ π1(U (e), z0) be a 
losed path starting and ending at z0 and en
losing at most thebran
h point e, and denote by γ̃l the (unique) lift of γ starting on the lth sheet at ql ,

p̃(ql ) = z0.3 The monodromy group permutes the elements of the �ber p−1(z0) = {q0, · · · , qn−1}and is de�ned by the a
tion
µγ ·ql = γ̃l (1) . (7.2.4)It is isomorphi
 to the group of roots de�ned by ql 7→ q(l+k) mod n = e

2πik
n ql , k ∈Zn, and thusto Zn.The monodromy group indu
es a representation on the �elds by means of

µ̂γ ·b(ql ) = b(γ̃l (1)) , (7.2.5)and similar for c. In a 
hart without bran
h point, the points ql 
an again be proje
ted on
Σ su
h that this relation holds for �elds b(l) and c (l).Sin
e T

n,m is globally Zn symmetri
, the representation of the monodromy group 
anbe diagonalized simultaneously for every bran
h point. This is obtained by the Fouriertransformations
bk (z) =

n−1∑

l=0

ek+1−n(l )b(l)(z)

ck (z) =
n−1∑

l=0

ēk+1−n(l )c (l)(z)

, em(l )= e2πil m
n , k = 0, . . . ,n −1. (7.2.6)The monodromy group now introdu
es the boundary 
onditions

µ̂ : bk (z) 7→ e−2πi k+1−n
n bk (z) , ck (z) 7→ e+2πi k+1−n

n ck (z) , (7.2.7)and the n di�erent Fourier transformations distinguish n di�erent irredu
ible representationsof this group. The domain of bk and ck is p−1(U ) =⊔
l∈{0,...,n−1} Vl , where U does not 
ontain abran
h point. While before it was reasonable to separate the �elds together with the di�erentsheets, the idea to entangle them in one equation is natural in a neighborhood of a bran
hpoint. The most important 
onsequen
e is that the 
urrents 
an now be de�ned also in aneighborhood of a bran
h point and as the single-valued �elds

jk (z) =− : bk (z)ck (z) : . (7.2.8)

3Composing such loops defined with respect to different branch points, one can generate all possible loops enclo-

sing one or several branch points. Therefore, and due to the global Zn symmetry, it is sufficient that I restrict my

discussion to one branch point.
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Operator Product Expansions Sin
e the sheets of the algebrai
 surfa
e are overlappingin a neighborhood of a bran
h point, the �elds may have nontrivial OPEs in this region. Tosee this, Knizhnik starts with two lo
al �elds b(l)(z) and c (l ′)(ω), z ∈ p−1(U )|Vl
, ω ∈ p−1(U )|Vl ′ ,whi
h are lo
ated 
lose to a bran
h point e. Applying a 
hart transition to a neighborhoodof e, z 7→ y = (z −e)1/n |Vl (e) and ω 7→ y ′ = (ω−e)1/n |Vl ′ (e) one ends up with

b(l)(z)c (l ′)(ω) =
n−1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

. (7.2.9)Here, I used that in the presen
e of a bran
h point b(l)(y)c (l ′)(y ′) = (y − y ′)−1, even if l 6= l ′. Inorder to apply this to the �elds in the Fourier expansion, I will use that the basis elements
em(l ) de�ne a s
alar produ
t

em · ēs =
n−1∑

l=0

em−s (l )=
{

n if ∃ t ∈Z : t n = m − s

0 else (7.2.10)whi
h 
an be applied to bk and ck . Combining it with the OPEs above, one ends up with
bk (z) ·ck ′(ω) =δk ,k ′

1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

(7.2.11)This quantity has to respe
t the transformation (7.2.7), in parti
ular letting z en
ir
le e,this must result in a phase shift of bk . Indeed, the produ
t above yields a fa
tor (yn)−
r+1−n

n 7→
e−2πi r+1−n

n (yn)−
r+1−n

n , whi
h restri
ts r to r
!= k, and the sum 
ollapses to this single term.Extending yn around y ′ n , one obtains

bk (z) ·ck ′(ω) =
(

1

z −ω
−

k+1−n
n

ω−e
+ : bk (ω)ck (ω) :+O(z −ω)

)
. (7.2.12)For k = k ′, this result should be 
ompared with the de�nition of the 
urrent

jk (ω) = lim
z→ω

[−bk (z)ck (ω)+ (z −ω)−1] . (7.2.13)Therefore, Knizhnik 
on
ludes that the additional term due to the bran
h point indi
atesthe presen
e of some ba
kground �eld, serving as a sour
e for the additional 
harge qk

jqk
(z) = jk (z)+

qk

z −e
, qk =

k +1−n

n
, k = 1, . . . ,n −1. (7.2.14)

7.2.2 The Twisted RepresentationsMotivated by the dis
ussion above, I will now extend the representation theory of se
tion3.4.1 to 
harges with values in the rational numbers, su
h that
bk (z)ck (ω)|qk〉 = (z −ω)−1

(ω
z

)qk

|qk〉 . (7.2.15)
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Here, I assume that normal ordering is again de�ned with respe
t to |0〉 and bk n |qk〉 = 0,
n > 0, ck n |qk〉 = 0, n ≥ 0. This representation is meant to exist lo
ally in a 
hart around abran
h point e whi
h I have set to e = 0.Due to the monodromy, the �elds in the di�erent se
tors are supposed to have a new seriesexpansion in this representation

bk (z) =
∑

n∈Z
bk n z−n−qk , ck (z) =

∑

n∈Z
ck n z−n+qk−1 , (7.2.16)whi
h must have an impa
t on the 
omposite �elds. Take for instan
e the the stress tensor.Firstly, it a
quires additional terms

Tqk
(z) = Tk (z)+

1

2

qk(qk +1)

z2
(7.2.17)due to the OPE above. Se
ondly, it is build from bk and ck whi
h are now in the represen-tation (7.2.16) on |qk〉. Therefore, the modes gain a shift by the 
harge qk

Tqk m
=

∑

n∈Z
(n −qk) : bk −n ck n+m : +

1

2
qk (qk +1)δm,0 . (7.2.18)and the �eld modes have new 
onformal weights [ Tqk 0

, bk n] = (−n−qk) bk n and [ Tqk 0
, ck n] =

(−n + qk ) ck n. On the other hand, [ jqk 0
, bk n] = − bk n and [ jqk 0

, ck n] = ck n , as before,and the U (1) 
harges are not a�e
ted. The state |qk〉 has 
harge qk , 
onforming with thedis
ussion in the last se
tion, and 
onformal weight 1
2

qk (qk +1), also 
f. se
tion 3.4.2.To 
on
lude this se
tion on the representation theory of the bc-system on |qk〉, noti
e thatthe U (1) 
urrent behaves under Möbius transformations as in equation (3.4.14). Therefore,the representation on |qk〉 is not unitary and it inherits the ba
kground 
harge q= 1 alreadyobtained in se
tion 3.4.1.
Twist FieldsFrom the CFT point of view there should 
orrespond a unique �eld to this representationwhi
h has the same quantum numbers and whi
h is �xed at the position of the bran
h point.Formally, I will denote this isomorphism by the mapping ∗ : µqk

(0)∗|0〉 = |qk〉 wherein µqk
(0)is the �eld 
orresponding to |qk〉 and |0〉 =

⊗n−1
l=0

|0〉l .4 For 
onvenien
e, I will omit the ∗ ina 
orrelator and write · · ·µqk
(0)∗|0〉 = · · ·µqk

(0)〉0, 
f. se
tion 3.4.1.In order to represent a bran
h point, µqk
(0) should respe
t the monodromy property ofthe �elds bk and ck , i.e.

bk (e2πiz)µqk
(0) = e−2πiqk bk (z)µqk

(0) ,

ck (e2πiz)µqk
(0) = e2πiqk ck (z)µqk

(0) .
(7.2.19)

4Formally, if V0 is the vector space generated from |0〉 and the fields b,c, Vqk
denotes the vector space on whch the

µqk
are represented, ∗ ∈End(Vqk

)×V0 →Vqk
.
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Consequently, the boundary 
onditions (7.2.7) are represented on the bc-system by meansof these �elds. If the indu
ed boundary 
onditions are non-trivial, i.e. qk 6∈Z, it is 
ommonto 
all µqk
a �twist �eld� [Gin88℄ and the representation of the bc-system on the respe
tivestate |qk〉 a �twisted representation�.The monodromy 
ondition imposed on the �eld µqk

allows for a whole sta
k of twist �eldswith 
harge qk +n , n ∈Z, 
alled �ex
ited twist �elds�. For instan
e the operator
µqk−1(0) =µqk

(0) bk 0 (7.2.20)de�nes a �eld of 
harge qk −1 and with 
onformal weight 1
2

qk (qk +1)−qk . Similarly, otherex
ited twist �elds 
an be generated by an a
tion of the modes of bk and ck . However,be
ause they are in the same representation of the monodromy group, all these ex
itedtwist �elds belong to the same representation on |qk〉. The operator µqk
(0) bk 0 is spe
ialsin
e it formally 
an be identi�ed with µqk

(0)|1〉, whereby |1〉 is the se
ond possible, howevernot 
onformally invariant, va
uum representation in the CSb
. It played the r�le of thelogarithmi
 partner of |0〉 in se
tion 4.1.3. This time, however, the 
onformal weights of
µqk

(0) and µqk
(0) bk 0 are not the same and both �elds 
an not be logarithmi
 partners.

7.2.3 ConclusionDue to the a
tion of the monodromy group and in addition to the representation on the
onformally invariant state |0〉, the fermioni
 bc-system on T
n,m falls into n representations,ea
h of whi
h is 
omprised by the �elds bk and ck , k ∈ {0, . . . ,n −1}, with the �eld algebrades
ribed by (7.2.15) and represented on µqk

(e) respe
tively |µqk
〉. These representationsare lo
ally de�ned in the sense that the �elds µqk

(e) are �xed at a bran
h point e andthe operator produ
t algebra (7.2.15) is de�ned in a neighborhood of this point. However,sin
e the monodromy group is Zn for every bran
h point, it is su�
ient to 
onsider therepresentation theory in a 
hart in
luding a single bran
h point. The 
urrents jk de�nedby the �elds in these representations are single-valued on Σ and yield the same quantumnumbers for any value of k. This is not true for the stress tensor, whi
h measures di�erentweights depending on the parti
ular representation.
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On Twist Fields and Torus Periods 8It is the a
hievement of M. Flohr to have related the twisted bc-system on T
2,2 to SU (2)SW theory, [Flo98, Flo04℄. Thereby, he took three 
ru
ial steps. Firstly, Flohr �released�the twist �elds and 
onsidered the bran
h points as dynami
al degrees of freedom on CP

1.As a 
onsequen
e, the question arised how the operator produ
t algebra gets enlarged whenOPEs between these �elds are taken into a

ount and whi
h �elds must be added in orderto 
lose this algebra. The answer to this question was the se
ond step Flohr had taken, heproposed that the bc-system on the torus should be identi�ed with the so-
alled triplet model[GK96, Roh96, Kau95℄. Finally, he argued that if the bc-system on the torus is identi�edwith the triplet model it is possible to des
ribe the main data of SU (2) SW in terms of
orrelation fun
tions of this theory.In this 
hapter I will motivate the 
hoi
e of the triplet model but take a more geometri
approa
h than that of Flohr. From this will follow that it is ne
essary to release the twist�elds in order to des
ribe the fundamental parameters of the torus (its periods and theirratio). As a 
onsequen
e I will then further dedu
e that the bc-system on the torus must beextended to a logarithmi
 CFT, and the triplet model will be the minimalisti
 extension.In the �rst se
tion, I will release the bran
h points and transform the algebrai
 
urve T
2,2into the �Legendre family�. This formulation is 
anoni
al in order to study small movementsin the moduli spa
e of tori. In parti
ular, the periods of the tori satisfy a hypergeometri
di�erential equation in the moduli parameter [CMSP03℄.In the following se
tion 8.2, I will identify this di�erential equation with the nullve
tor
ondition on the twist �eld µ− 1

2
[Flo98, Flo04, Flo03, Gab03℄, whi
h again relies on thepossibility that the bran
h points may vary. This will explain why it is ne
essary to extendthe bc-system to an LCFT.The 
hapter will be 
on
luded with a brief dis
ussion of the representation theory ofthe bc-system and a brief introdu
tion of the triplet model as the minimalisti
 logarithmi
extension in
ludeing the twist �elds.

8.1 The Legendre FamilyThe algebrai
 
urve T
2,2 
an be transformed into a polynomial of third order

Eλ : y2(z;λ) = z(z −1)(z −λ) , λ ∈CP
1 \ {∞,0,1} (8.1.1)
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by means of SL(2,C) transformations of z and y .1 Indeed, every 
ompa
t Riemannian surfa
eof genus one is the set of zeros of a polynomial of this form for some λ [Jos02, FB00℄.Therefore, the moduli spa
es of the two des
riptions of tori are equivalent, T2,2 ≃ Eλ. Thebran
h points are now positioned at {∞,0,1,λ}, and Eλ 
an be 
onsidered to be parametrizedby λ ∈CP
1 \{∞,0,1}. This makes the Legendre family parti
ularly ni
e to study variations ofthe 
orresponding equivalen
e 
lasses of tori as fun
tions of λ, or to study the singularitiesof Eλ whi
h are evident in terms of λ. I will denote the spa
e ME = CP

1 \ {∞,0,1} as themoduli spa
e of the Legendre family Eλ, with 
oordinate λ.
8.1.1 Relation to the Lattice TorusIn what sense 
an a variation in λ evoke a movement between di�erent equivalen
e 
lassesof tori? The 
anoni
al parameter to distinguish or identify equivalen
e 
lasses of tori is theratio τ of the periods of a torus in the latti
e des
ription.Below I will argue that ea
h non-singular member of the Legendre family is equivalent toa latti
e torus

C/Lλ− {[0]} , Lλ = { mΠD (λ)+nΠ(λ) , τ(λ) =±
ΠD (λ)

Π(λ)
, ℑ(τ) > 0, m,n ∈Z } , (8.1.2)whereby the 
hoi
e of sign in the de�nition of τ is su
h as to 
ustomize ℑ(τ) > 0 [FB00℄.Without loss of generality I will assume that after some res
aling of the periods I may
hoose the plus sign. The periods of Lλ are des
ribed in terms of 
ohomology 
lasses of Eλ.The di�erential form

̟(z;λ) =
dz

y(z;λ)
(8.1.3)is holomorphi
 and without zeros on Eλ .2 Therefore, it is 
losed with respe
t to the de

1Without loss of generality, e4 6= 0. Apply the following transformations and some redefinition of y

z 7→
e4z

z +e−1
4

⇒ y2 7→ y ′ 2 =
3∏

i=1

(e4 −ei )(z −u1)(z −u2)(z −u3) , ui = ei [e4(e4 −ei )]−1 .

The change of variables z 7→ (u1 −u2)z +u1 and another appropriate redefinition of y ′ yield the desired result,

whereby λ= u3−u1
u1−u2

.
2This is most obvious in the Weierstrass formulation of Eλ, [FB00]. Let Lλ be the lattice corresponding to Eλ. One

may again redefine Eλ by z 7→ 41/3z + λ+1
3 which yields the Weierstrass normal form

X (g2 , g3) : y2 = 4z3 −g2 z −g3 , y, z ∈C

g2 = 41/3

3
(λ2 −λ+1), g3 = 1

27
(λ+1)(2λ2 −5λ+2).

(8.1.4)

This curve is called Weierstrass normal form because the Weierstrass function

℘(z) = 1

z2
+

∑

ω∈Lλ\{0}

(
1

(z −ω)2
− 1

ω2

)
, (8.1.5)

satisfies the differential equation

℘′(z)2 = 4℘(z)−g2℘(z)−g3℘(z) . (8.1.6)
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Rham di�erential and has a well de�ned 
ohomology 
lass. By means of de Rham duality,this 
ohomology 
lass 
an be de�ned to be the dual of some homology 
lass in H1(Eλ,Z),whi
h, without loss of generality, is generated by the 
y
les as depi
ted below,
α β

PSfrag repla
ements
∞ u10and with interse
tion number 1. Denote by α∗ and β∗ the basis for H 1(Eλ,Z) dual to α and

β, i.e. ∫
αα

∗ = 1, ∫
αβ

∗ = 0. The 
ohomology 
lass of ̟ is given by an expansion in this basisas
[̟] =α∗

∫

α
̟+β∗

∫

β
̟ . (8.1.7)Thus, if [γ]∈ H1(Eλ,Z), [γ]= mα+nβ , m,n ∈Z one �nds that

∫

[γ]
[̟] = m

∫

α
̟+n

∫

β
̟ . (8.1.8)Sin
e the ellipti
 integrals like ∫

α̟ take their values on Lλ (
f. the explanation in the footnoteon pg. 96), I 
an identify
ΠD (λ) =

∫

α
̟ , Π(λ)=

∫

β
̟ (8.1.9)and interpret (8.1.8) as the representative for [γ] on C/Lλ.

8.1.2 A Differential Equation for the PeriodsThe homotopy 
lass [̟(λ)] and, if the 
y
les are �xed, also the periods ΠD and Π, satisfy ahypergeometri
 di�erential equation
λ(λ−1)

d2̟(λ)

dλ2
+ (2λ−1)

d̟(λ)

dλ
+

1

4
̟(λ) = 0, (8.1.10)whereby ̟ is the representative of [̟] and the di�erential equation is zero up to exa
t forms.The following ni
e proof is taken from [CMSP03℄. The quantity [̟(λ)] =ΠD (λ)α∗+Π(λ)β∗
an be interpreted as a di�erential form on

H 1(E ,Z) :=
⋃

λ∈CP1\{∞,0,1}

H 1(Eλ,Z) . (8.1.11)

The Weierstrass function is periodic in Π and ΠD and is defined on C/Lλ. It induces a conformal equivalence

between X (g2 , g3) and C/Lλ− {[0]}, via [z] 7→ (℘(z),℘′(z)), whereby [0] is taken out since ℘ has a pole at this point

[FB00]. Let γ(t) be a curve onC/Lλ which does not pass a zero of℘′. Omitting [·] for convenience, dγ(t) = ℘′(γ)
℘′(γ)

dγ=
d℘(γ)
℘′(γ)

, and the elliptic integral E(γ) =
∫
γ

d℘
℘′ is formally the inverse of ℘, mapping X (g2 , g3) to C/Lλ. This integrand,

restricted to a curve which is not passing a zero of ℘′, is a holomorphic one form and thus closed. It can be

identified with ̟ on Eλ.
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The derivative ∂λ = d
dλ

denotes the the 
ovariant di�erential on this spa
e, whereby the
onne
tion is 
hosen su
h that α∗ and β∗ are (lo
ally) 
onstant. Then, formally, ∂λ[̟(λ)] =
∂λΠD (λ)α∗ +∂λΠ(λ)β∗ = [∂λ̟(λ)]. For this relation to make sense, one has to prove that
∂λ̟(λ) is indeed a representative of a 
ohomology 
lass of E . Take the representative ̟(λ),then

∂λ̟(λ) =
1

2
[z(z −1)(z −λ)3]−

1
2 dz (8.1.12)is a meromorphi
 one-form. However, its pole has a multipli
ity greater equal two at (y, z)=

(0,λ) =: P , su
h that it nevertheless de�nes a 
ohomology 
lass. Namely, in a neighborhoodof P , y(z) is invertible and one 
an write y2 = h(y)
λ(λ−1) (z(y)−1), whereby h(y) is holomorphi
in y and h(0) = 1. Solving for z and expanding h(y)−1 around y = 0 yields z = λ+O(y2).Now, with y2(z) = p(z) one has ̟ = 2

dy

∂z p(z) , and inserting the approximation for z yields
̟= 2

dy

λ(λ−1)
+O(y−2). Thus, plugging in again z −λ=O(y2),

∂λ̟(λ) =
1

2

̟(λ)

z −λ
=

dy

λ(λ−1)(z −λ)
+O(y−2) ∼

dy

λ(λ−1)y2
+O(y−3) . (8.1.13)The following remarks 
on
lude the proof. By Stokes theorem, the residuum of a one-formdepends only on the 
ohomology 
lass. Therefore, the sequen
e

0→ H 1(E ,Z)
rest r i ct i on−→ H 1(E \ {P },Z)

∮
P→ 0. (8.1.14)is exa
t and ∂λ̟(λ) is a 
ohomology 
lass on E and not just on E \{P }. Sin
e ̟ and ∂λ̟ areboth 
ohomology 
lasses and H 1(E ,Z) has two generators, every other 
ohomology 
lass 
anbe expanded in these two. In parti
ular

A(λ)∂2
λ̟+B (λ)∂λ̟+C (λ)̟= 0, (8.1.15)modulo an exa
t form. A 
al
ulation reveals that f = [z(z − 1)(z −λ)−3]

1
2 satis�es d f =

(z −1)∂λ̟+ z∂λ̟−2z(z −1)∂2
λ
̟. Using z = z −λ+λ in this equation and (z −λ)∂λ̟ = 1

2̟,
(z −λ)∂2

λ
̟= 3

2∂λ̟ yields the di�erential equation for the periods.
8.1.3 Solutions for the PeriodsThis di�erential equation is a spe
ial 
ase of the hypergeometri
 equation

(
λ(λ−1)

d2

dλ2
+ [(a +b +1)λ−c]

d

dλ
+ab

)
F = 0, (8.1.16)with a = b = 1

2 and c = 1. Its solutions are the hypergeometri
 fun
tions F (a,b;c |λ), 
lassi�edfor instan
e in [E+85℄. In the 
ase under 
onsideration, the solution spa
e may be spannedby the fun
tions
F1(λ) = F ( 1

2 , 1
2 ;1|λ) , F2(λ) = iF ( 1

2 , 1
2 ;1|1−λ) . (8.1.17)
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Erdelyi de�nes the fun
tion F ( 1
2

, 1
2

;1|λ) by an integral representation whi
h yields an analyti
,single-valued fun
tion on C\R≥0 [E+85℄. Its lo
al form in a neighborhood of λ= 0 equals
F ( 1

2
, 1

2
;1|λ) =

1

π

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2 )n!

)2

[kn − log(1−λ)](1−λ)n , (8.1.18)whereby |1−λ| < 1 , |arg(1−λ)| <π and
kn = 2ψ(n +1)−2ψ( 1

2 +n) , ψ(λ) = ∂λ logΓ(λ) . (8.1.19)In this shape (8.1.18), it is evident that the solutions F1 and F2 of the di�erential equationfor the periods have logarithmi
 singularities at λ= 1 and λ= 0, respe
tively.Both solutions F1 and F2 get, however, mixed whenever λ passes the bran
h 
ut between
0 and 1. The results are again taken from [E+85℄, who used the relation

1

2
πF1(λ)−

i

2
log (1−λ)F2(λ) =

1

2

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2 )n!

)2

kn(1−λ)n , (8.1.20)to obtain
µ0 :

(
F1

F2

)
7→

(
1 0

2 1

)(
F1

F2

)
, µ1 :

(
F1

F2

)
7→

(
1 −2

0 1

)(
F1

F2

)
, (8.1.21)whereby µ0 and µ1 denote the operation of en
ir
ling the bran
h points 0 and 1, on
e.The group generated by the matri
es above is 
alled the �global monodromy group� of Eλ[CMSP03℄. Due to the monodromy property, the 
hoi
e of the solutions F1 and F2 has nofundamental meaning. Indeed, given the latti
e de�ned by the periods F1, F2, all latti
es inthe orbit of the monodromy group are identi
al. For this reason, the periods 
orrespondingto di�erent algebrai
 surfa
es are 
lassi�ed by the global monodromy groups and vi
e versa.

8.2 LCFT-fication of the Legendre FamilyThe Legendre family has a �oating bran
h point, whereas in Knizhniks approa
h all bran
hpoints were �xed. Therefore, in order to �nd a �eld theoreti
 expression for the periods, Iwill now reinvestigate the fermioni
 bc-system on T
2,2 and reformulate the bran
h points asdynami
al degrees of freedom. Behind this work stands a pile of publi
ations on the LCFT at

c =−2, on my table are sta
ked up in parti
ular the referen
es [Flo98, Flo03, Flo04, Kau95,Gab03, Gur93℄.Until now, the bc-system on T
2,2 
onsists of two di�erent lo
al representations |q0/1〉 inevery 
hart whi
h 
ontains a bran
h point, and one globally de�ned representation on |0〉with support on Σ. The following list summarizes the representations and �elds I have
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dis
ussed in 
hapter 7:reps. 
harges J weights ∆ �elds domain
|0〉 0 0 1(z) Σ

|0̃〉 := |q1〉 0 0 1̃(ei ) :=µ0(ei ) {ei }

|µ〉 := |q0〉 −1
2

−1
8

µ(ei ) :=µ− 1
2

(ei ) {ei }

|σ〉 := b0 0 |q0〉 −3
2

3
8 σ(ei ) := b0 0µ− 1

2
(ei ) {ei }

(8.2.1)Only, the latter two rows denote twist �elds, whereas the �rst representations have trivialmonodromy. Noti
e that the untwisted representations have the same quantum numbers andmight be logarithmi
 partners, whereas this is not true for the twist �elds. The dynami
al�elds represented on these spa
es are the �elds b(z) and c(z). I have distinguished theirrepresentations by an index k su
h that for instan
e b(z) denoted the representation on |0〉and bk (z) the representation on |qk〉. For 
onvenien
e I will now drop this index.It is ne
essary to release the �elds representing the bran
h points in order to reprodu
ethe situation of the Legendre family. The bran
h point 
oordinates and 
orresponding �eldsmay then move on CP
1, and the ba
kground �elds be
ome additional dynami
al quantities.In this sense, the 
orresponding lo
al representations be
ome global representations on Σand by a 
onformal transformation of the algebrai
 surfa
e as des
ribed in the last se
tion,one may identify {ei }i=1,...,4 = {0,1,∞,λ} ∈CP

1, λ ∈ME .As soon as twist the �elds related to the bran
h points are released, the question ariseswhat the operator produ
t algebra looks like. In parti
ular, I would like to be able to
al
ulate 
orrelation fun
tions of the kind
{
〈

s∏

l=1

Ol

n∏

i=1

φi (zi )
m∏

j=1

µqk j
(ω j )〉 6= 0,

zi ∈Σ , ω j ∈CP
1

∑
i J(i )+

∑
j J( j )+

∑
k J(l )] =−1

}
, (8.2.2)whereby φi 
an be b(z) or c(z) and 〈·〉 = 0〈·〉0, 
f. se
tion 3.4.1. The 
ondition ∑
i J(i )+

∑
j J( j )+

∑
k J(l ) =−1 is ne
essary to 
an
el the ba
kground 
harge q= 1. This is a

omplished by theoperators Ol , whi
h denote any non-dynami
al quantities and whi
h I will 
all �s
reeningoperators�, for this reason. For instan
e, b0 is a s
reening operator in 〈b01(z)〉 = 〈0|1〉 = 1.

8.2.1 A Hypergeometric Equation for the Twist FieldsFor the moment, I am interested in 
orrelation fun
tions in
luding the twist �elds µ− 1
2
.They are promising 
andidates to simulate the periods of the Legendre family be
ause theyintrodu
e some monodromy and, hen
e, mimi
 the non-trivial behaviour of the bran
h points.To 
al
ulate 
orrelation fun
tions, it is helpful to sear
h for restri
tions su
h as nullve
tor
onditions. Indeed, the representation |µ〉 satis�es a nullve
tor 
ondition at level 2

(T−2 +2T 2
−1)|µ〉 = 0, (8.2.3)
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whi
h signi�es that the four-point fun
tion has to satisfy a hypergeometri
 di�erential equa-tion [Gur93, Flo03℄,
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉 =λ

1
4 (λ−1)

1
4 F (λ) ,

λ(λ−1)
d2F (λ)

dλ2
+ (2λ−1)

dF (λ)

dλ
+

1

4
F (λ) = 0.

(8.2.4)Thus, up to a prefa
tor, the four-point fun
tion of the µ �elds reprodu
es the periods of theLegendre family and, without loss of generality, I 
hoose the two solutions to be F1 and F2as in (8.1.3). The 
orresponding four point fun
tions now equals
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉k =λ

1
4 (λ−1)

1
4 Fk(λ) , k ∈ {1,2} , (8.2.5)and should be 
ompared with

Π(λ) = F ( 1
2 , 1

2 ,1|λ) , ΠD (λ) = iF ( 1
2 , 1

2 ,1|λ) . (8.2.6)Consequently, the 
orrelation fun
tions above and the periods of the Legendre family de�neequivalent tori and their quotient yields the same fundamental parameter3
τ(λ) =

ΠD (λ)

Π(λ)
=

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉2

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉1
(8.2.7)Applying the monodromy group (8.1.21), I 
an rede�ne the periods without 
hanging theunderlying latti
e torus. In this respe
t, the �
onformal blo
ks� in the 
orrelation fun
tionsare not uniquely determined.

8.2.2 The Necessity of a Logarithmic ExtensionThe ne
essity for a logarithmi
 extension of the bc-system on the torus 
an now be seenfrom the operator produ
t expansion between the twist �elds, whi
h was originally derivedby V. Gurarie [Gur93℄. To explain this, I will, however, follow a publi
ation of M. Gaberdielin [Gab03℄. A general solution of the nullve
tor 
ondition equals
F (λ) = A F1(λ)+B [F1(λ) log (λ)+H (λ)] , (8.2.8)whereby F1 and H are regular at z = 0, and I used (8.1.20) as well as λ 7→ 1−λ to reformulate

F2(λ) = i
π

(
F1(λ) logλ+H

). In the expression above it is immediate that the OPE betweentwo �elds µ must 
ontain logarithms and splits into two parts. Namely, if two of the �elds inthe four-point fun
tion are shifted to a neighborhood of in�nity and treated as a ba
kground�eld Ω(∞), the 
orrelation fun
tion still has to respe
t the OPE by its de�nition. Thus,
µ(z)µ(ω) = (z −ω)

1
4 (φ1(ω)+φ2(ω) log (z −ω)) , (8.2.9)

3Two tori are equivalent, iff their lattices differ by some nonzero complex number L = aL′, a ∈ C \ {0}. This is more

general than saying that two tori are identical, i.e. L = L′. The identical tori are related by the global monodromy

group, cf. section 8.1.
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with A = 〈Ω(∞)φ1(0)〉 , B = 〈Ω(∞)φ2(0)〉. Gaberdiel uses a further tri
k whi
h allows todetermine the �elds φi . He lets λ en
ir
le 0 in the OPE with the other twist �elds shiftednearby in�nity, whi
h yields
〈Ω(∞)e2πiT0µ(λ)µ(0)〉 =λ

1
4 (A+2πiB +B log(λ)) . (8.2.10)Thus, with φi |0〉 =: |φi 〉 he obtains

T0|φ2〉 = 0, T0|φ1〉 = |φ2〉 . (8.2.11)I have en
ountered su
h an equation already in (4.1.10) and thus may 
on
lude that thefermioni
 bc-system on the torus unavoidably has to be logarithmi
ally extended, whereby
φ2(z) = 1(z) and φ1(z) = Ψb(z), 
f. 
hapter 4. The �elds 1(z) and Ψb(z) have the same
onformal weights and U (1) 
harges, as is demanded for logarithmi
 partners of the Vira-soro algebra. In (8.2.1) already appears a set of �elds and representations subje
t to that
onstraint. Therefore, I 
laim that for the fermioni
 bc-system on Eλ,

µ(z)µ(ω) = (z −ω)
1
4 (1̃(ω)+1(ω) log (z −ω)) ,

1̃(z)=Ψb(z) , |0̃〉 = b0|0〉⊗ǫ|0〉K ,
(8.2.12)and all �elds in the untwisted se
tor have to be logarithmi
ally extended in analogy with
hapter 4.

8.3 The Triplet ModelThe triplet model is an LCFT whi
h 
ontains the logarithmi
ally extended untwisted se
toras well as the twisted representations [GK96, Roh96, Kau95℄. To the best of my knowledge,this model is in addition the LCFT whose operator produ
t algebra 
loses on the represen-tations noted down in (8.2.1) with a minimal amount of additional representations added.Its basi
 ingredient is an additional symmetry whi
h restri
ts and 
ontrols the possible rep-resentations. In order to make this expli
it, I will 
omment on the means whi
h restri
t therepresentation spa
es of a 
onformal �eld theory. Therefore, I will �rstly introdu
e what Iunderstand under a physi
ally eligible representation, and thereafter dis
uss the impa
t ofthe additional symmetries and nullstate 
onditions whi
h lead to the triplet model.
8.3.1 Symmetries and RepresentationsThe OPE of the twist �elds 
ould be re
onstru
ted due to a nullstate 
ondition whi
h madeit ne
essary to extend the representation of the fermioni
 bc-system on |µ〉 by |0〉 and |0̃〉.Behind this stands a general feature of CFTs. Sin
e the �elds and states are supposed
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to be isomorphi
, obtaining knowledge of the operator produ
t algebra of the �elds andstudying the possible representation spa
es are two sides of the same medal. This knowledgeis basi
ally dedu
ed from nullstates and symmetries. To explain how this works, I mustspe
ify what I understand under a �physi
ally relevant� representation spa
e.In se
tion 3.4.1, I have de�ned a 
olle
tion of representations on 
harged states |p〉,however, not all of them are �physi
ally� reasonable. In the situation of a CFT for instan
e,the �physi
al� representation spa
es should be build on states whi
h preserve 
onformal sym-metry. This 
ondition would have restri
ted the bc-system to be build solely on |0〉, whi
his the only SL(2,C) invariant state among the states |p〉, p ∈Z. On the other hand, sin
e the
bc-system breaks unitarity, it is not possible to 
onstru
t a thoroughly �physi
al� theory,anyway, and it was ne
essary to in
lude the dual state 〈1| to a

ount for the ba
kground
harge. Therefore, I will restri
t the representations as follows:
Restriction by Symmetries:Let C ∪S be some operator produ
t algebra of holomorphi
 �elds, whereby I have extra
tedthe part S 
onsisting of the symmetry generators T , for the interior Virasoro symmetry,and Sa(z) , a = 1. . . A for additional exterior symmetries. These symmetries are subje
t to
[Sa

0 ,T0] = 0, [Sa
0 ,Sb

0 ] = 0, and I assume that there exists a unique SL(2,C) invariant state |0〉, onwhi
h they are diagonal. In the spirit of the 
onsequen
es a logarithmi
 deformation alongthe lines of [FFH+02℄ implies, I understand by a physi
ally eligible representation (PER) of
C ∪S a multiplet M (φ)K of ve
tors |φ,k〉 , k = 1, . . . ,K subje
t to the following 
onditions:

➀ REPRESENTATION OF THE OPA: In the representation on M (φ)K , the �elds in C have amode expansion
Φ(z) =Φ

(naive)(z)+ Φ̃(z) , Φ
(naive)(z)=

∑

n∈Z
Φn z−n−∆T (Φ)whereby Φ̃∈ End(M (φ)K )((z, z−1))[log z]. For all k, |φ,k〉 is annihilated by Φn , Φ̃n , n >

0.4 The set of states {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0} is not empty. The operatorprodu
t algebra of the �elds in C is represented on |φ,k〉 ∀ k.
➁ INTERIOR SYMMETRY: On every |φ,k〉, the �eld T 
an be de
omposed as

T (z) = T (naive)(z)+g(z) ,su
h that the a
tion of the �eld modes in T (naive) =
∑

n∈ZT (naive)
n z−n−2 on |φ,k〉 doesnot lead out of the k th se
tor, and the zero mode is diagonal. The other �eld g(z) ∈

End(MK )((z, z−1)) permutes the elements of the multiplet. Hen
e, the eigenvalue ∆φ of
T (naive)

0 is a quantum number of M (φ)K . Moreover, I assume that the OPA of T with the
4In order to avoid indices which are not integers, I do not assume that the field modes Φn have conformal weight −n.
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�elds in C is preserved and that there exists some |φ,k〉 ∈ {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0}su
h that g(z)|φ,k〉 = 0.
➂ EXTERIOR SYMMETRY: I assume that the �elds Sa(z) ∈ S have expansions and repre-sentations of the kind

Sa (z) = Sa (naive)
(z)+gSa (z) (8.3.1)with ga

S ∈ End(MK )((z, z−1))[log z]. The �elds Sa (naive) and gSa shall enjoy analogueproperties as were demanded for T on any |φ,k〉. The 
onditions [ Sa (naive)
0 ,T (naive)

0 ] = 0and [ Sa (naive)
0 , Sb (naive)

0 ] = 0 shall be valid su
h that the eigenvalues of Sa (naive)
0 are quan-tum numbers of M (φ)K . I do further assume that there exists some �non-logarithmi
�states |φ,k〉 ∈ {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0 = g(z)|φ,k〉} subje
t to gSa (z)|φ,k〉 = 0 ∀a.

➃ FIELD-STATE CORRESPONDENCE: There exists an isomorphism ∗ su
h that φk (0)∗|0〉 =
|φ,k〉 ∀ k de�nes an element φk ∈ End(Mk )((z, z−1))[log z]. I assume that the symmetrygenerators T (z) and Sa(z) have OPEs with the �elds φk whi
h take the generi
 formfor the naive �elds and do not lead out of the representation. Consequently, φk hasthe same quantum numbers as |φ,k〉 with respe
t to T (naive) and Sa (naive). The OPE of
g(z) and gSa (z) with φk , 
ontains �elds φk ′ , k 6= k ′ or their derivatives, 
orrespondingto the a
tion of those operators on a state |φ,k〉.

➄ IRREDUCIBILITY: If there exist isomorphi
 representations MK ≃ M ′
K , i.e. the �eldalgebra C 
ontains a bije
tive linear mapping between the modules generated from Con these spa
es, I treat them as equivalen
e 
lasses and �
hoose� the set of ve
tors whi
his annihilated by the maximal amount of symmetry generators T (naive)

n , S(naive) a
n , n ∈Zas representative.By this means it is 
lear that the PERs are also representations of 
ertain symmetries and
an thus be 
lassi�ed and restri
ted.

Some Examples The holomorphi
- antiholomorphi
 fermioni
 bc-system of 
hapter 4 hasfour PERs if the zero modes b, b̄ and c , c̄ are ex
luded. The states |0,0〉 and |1,1〉 yield adoublet, the o�-diagonal states |0,1〉 and |1,0〉 singlet representations. The representationswith higher 
harge are not PERs, be
ause there exist modes in the �eld algebra whi
h a
tas isomorphisms. If, as des
ribed in 
hapter 4, it is logarithmi
ally extended, the PERs arepreserved. The reason is that even though the modes b0 and b̄0 enter the extension �elds,these 
an not add to the �eld algebra, for it would break Möbius 
ovarian
e, 
f. se
tion4.1.3.Similar arguments for other s
enarios lead to the following tabular, wherein �+� denotesthe theory with zero modes, �−� the theory without zero modes and all states without tildeor ǫ are non-logarithmi
:
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bc-system unextended PERs logarithmi
ally extended PERsholo + |0〉
{
|0〉, |0̃〉

}holo − |0〉 , |1〉
{
|0〉, |0̃〉

}
, |0〉⊗ǫ|0〉K , |1〉⊗ |0〉Kholo-anti + |0,0〉 { |0,0〉, |1,1〉 }holo-anti − { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉 { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉

Restriction by NullstatesThis exampli�es that the 
ondition of irredu
ibility puts 
onstraints on the theory. Anotherexample is the twist state |µ〉, whi
h has a potential subrepresentation on a nullstate, 
f.se
tion 8.2.1. This state was, however, identi
al to zero, su
h that the submodule generatedby it already was ex
luded. Still, it may happen that there are subrepresentations on ve
-tors |N 〉 ∈ spanC

{∏
n,i φi ni

|0〉} : φi ni
∈C ∪S , ni < 0

} whi
h do not vanish identi
ally. Themodules build on su
h ve
tors must be divided out, whi
h is e�e
tively the same as setting
|N 〉 = 0. This must be a

ompanied by the 
ondition that any 
orrelation fun
tion whi
hin
ludes the �eld N (z) 
orresponding to |N 〉 must vanish, and this is equivalent to requiringthat in the representation on any M (φ)K

gN (z)|φ,k〉 = 0, N (naive)
0 |φ,k〉 = 0, ∀k . (8.3.2)If N (naive)

0 is 
onstituted by the zero modes of 
ertain symmetry generators, this restri
ts thepossible eigenvalues of those generators and thus the possible representation spa
es.
8.3.2 Realization of the Triplet ModelThe triplet model results from an additional SU (2) symmetry in the logarithmi
 fermioni

bc-system.5 The additional symmetry introdu
es new nullstate 
onditions and thus restri
tsthe PERs [GK96, Roh96, Kau95℄.The su(2) Lie algebra is realized in terms of the (naive part of the) zero modes of the �eldgenerators W a

n 
orresponding to the �elds6
W 1(z)=−∂2

z e(z)∂z e(z) ,

W 2(z)=
1

2

[
∂2

z e(z)∂z b(z)+∂2
z b(z)∂z e(z)

]
,

W 3(z)=−∂2
z b(z)∂z b(z) .

(8.3.3)

5This also works for the non-logarithmic fermionic bc-system without zero modes, which is a special case.
6For the logarithmic case, one may set b0 = 0 = c0, ad libitum. If the non-logarithmic situation is considered, set in

addition ǫ= ρ = 0.
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The �eld modes W a
n extend the Virasoro algebra by

[T m ,T n] = (m −n)T m+n −
1

6
m(m2 −1)δm,−n ,

[T m ,W a
n ] = (2m −n)W a

m+n ,

[W a
m ,W b

n ] = g ab

(
2(m −n)Λm+n +

1

20
(m −n)(2m2 +2n2 −mn −8)T m+n

−
1

120
m(m2 −1)(m2 −4)δm,−n

)

+ f ab
c

(
5

14
(2m2 +2n2 −3mn −4)W c

m+n +
12

5
V c

m+n

)
,

(8.3.4)

whereby Λ(z) =: T 2(z) : − 3
10∂

2
z T (z) and V a(z) =: T (z)W a (z) : − 3

14∂
2
zW a (z). The metri
 is sym-metri
 with g ab =δab and the stru
ture 
onstants are those of su(2), namely f ab

c = iǫabc .Gaberdiel and Rhosiepe also note down the nullstates whi
h are de
isive for the determi-nation of the possible representations. The 
ondition that the zero modes of the naive partof the 
orresponding null�eld on a PER be zero yields
∆

2
φ(8∆φ+1)(8∆φ−3)(∆φ−1) |φ,k〉 = 0 (8.3.5)for arbitrary multiplets M (φ)K , and is a

ompanied by

[W a
0 ,W b

0 ](naive) |φ,k〉 =
2

5
(6∆φ−1) f ab

c W c (naive)
0 |φ,k〉 . (8.3.6)Consequently, the only allowed PERs fall into representations of su(2) and are states withhighest weights {

0,−1
8

, 3
8

,1
}. This extends the representations listed in (8.2.1) in a minimal-isti
 way.

8.3.3 CharactersIn the next 
hapter I will determine the prepotential of pure gauge, SU (2) Seiberg-Wittenin terms of some 
hara
ters of the triplet model. Therefore, I will 
on
lude this 
hapter byquoting the ones relevant for my 
onsiderations.H. G. Kaus
h, [Kau95℄, proposed that 
ertain primary �elds in the Ka
 table, for instan
ethose in the �augmented� minimal model c6,3 with 
onformal weights
∆r,s =

1

8
((2r − s)2 −1), 0 < r < 3, 0 < s < 6, (8.3.7)
an be identi�ed with the �elds appearing in the non-logarithmi
 triplet model. Indeed,the �elds in the augmented minimal model have the 
orre
t quantum numbers and the �eldwhi
h by su
h is the analogue of µ also has the 
orre
t nullstate 
ondition, 
f. [Flo03, RRS08℄.
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By this analogy, Kaus
h 
on
luded that the 
hara
ters of the non-logarithmi
 triplet modelare those of the augmented minimal model
χ− 1

8
(q)=

Θ0,2(q)

η(q)
, χ 3

8
(q)=

Θ2,2(q)

η(q)
,

χ0(q) =
1

2

(
Θ1,2(q)

η(q)
−η2(q)

)
, χ1(q) =

1

2

(
Θ1,2(q)

η(q)
+η2(q)

)
,

(8.3.8)with Ja
obi-Riemann theta fun
tions Θr,s (q) =
∑

n∈Z q
(2kr+s)2

4s , Dedekind η fun
tion de�ned by
η(q) = q

1
24

∏
n∈N(1−qn) and q = e2πiτ. The parameter τ is the modulus of some latti
e torus.These 
hara
ters were 
ompleted by [GK96, Flo96℄ to mat
h with the logarithmi
allyextended triplet model. However, I will not make use of the additional 
hara
ters and referthe interested reader to the literature just 
ited.Now, I have everything together to relate the triplet model to Seiberg-Witten theory.
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Relation to Seiberg-Witten Theory 9In this 
hapter I will determine the spe
tral torus of pure gauge, SU (2) Seiberg-Wittentheory in terms of 
hara
ters of the triplet model. Moreover, I will obtain the prepotentialas a fun
tion of the torus modulus τ, whi
h 
an be expressed as the ratio of the four-pointfun
tions of the twist �eld µ in this theory, (8.2.7). It follows, that this spe
i�
 Seiberg-Witten theory is 
ompletely determined by the triplet model.Firstly, I will start with a brief introdu
tion to Seiberg-Witten theory and dis
uss its spe
-tral 
urve. The relation to the triplet model will be dis
ussed in se
tion 9.2 and summarizesthe results of [VF07℄.
9.1 Some Words on Seiberg-Witten TheoryIn [SW94℄, N. Seiberg and E. Witten derived the full prepotential F (in
luding instantons)of the low energy e�e
tive a
tion for N = 2 supersymmetry with gauge group SU (2). Interms of N = 1 �elds, this theory is des
ribed by a family of Lagrangians

LA =
1

8π
ℑ

(∫
d4θ Ā AD +

∫
d2θ τ(A)W αWα

)
, AD =

dF (A)

dA
, τ=

d2
F (A)

dA2
. (9.1.1)The spa
etime metri
 has a Minkowskian (mostly minus) signature and, with the ex
eptionthat I use another normalization for the Pontrjagin index, 1

8π2

∫
S4 F ∧F ∈Z [Ber96℄, I sti
k tothe 
onventions of [Bil96℄. The prepotential F is holomorphi
 in the expe
tation value A ofthe N = 1 
hiral multiplet 〈Φ〉 = 1

2 Aσ3.The Lagrangian above has its domain on the e�e
tive va
uum 
on�gurations while themassive Goldstone bosons are integrated out. By the term �e�e
tive va
uum� I mean thatfor nonvanishing values of 〈Φ〉 the SU (2) gauge symmetry is broken to U (1) and the thusobtained �eld 
on�gurations do not enjoy the full symmetry of the theory. Furthermore, assoon as the s
alar �eld is in an e�e
tive va
uum 
on�guration, all other parti
les have thesame property for they belong to the same N = 2 multiplet.In the following I will only motivate the basi
 geometri
 fa
ts whi
h lead to the spe
tral
urve of this theory and to its interpretation as a torus. The reader interested in the details,is refered to the literature [Bil96, SW94, DP99, Ler97℄. Afterwards, I will relate the spe
traltorus to the triplet model.
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9.1.1 The Spectral Curve of SW TheoryThere is a remnant of the larger SU (2) symmetry hidden behind the 
hoi
e of A, namelyunder rotations by π around the �rst or se
ond axis of the gauge group, A 7→ −A and theseare equivalent gauge 
on�gurations. Thus, rather than 〈Φ〉, it is reasonable to 
onsider theCasimir 〈tr Φ
2〉 as a gauge invariant parameter. If φ is the s
alar �eld in the 
hiral multiplet

Φ, the Casimir yields some u = 〈tr φ2〉. The parameter spa
e of u ∈C 
onstitutes the modulispa
e of gauge inequivalent e�e
tive va
ua MSW , and thus of the family LA(u) =Lu . Formallyone 
an add {∞} to MSW , whi
h is a singular point for Lu .In general, the moduli spa
e MSW has singularities at those values of u at whi
h thee�e
tive a
tion is not de�ned or inadequate to des
ribe the massless se
tor. Besides {∞},these are the points u at whi
h massive �eld modes whi
h have been integrated out turnmassless, 
f. [SW94, Bil96, DP99, Ler97℄.Seiberg and Witten argued [SW94℄ that there should exist two additional singular points
{s,−s}∈MSW , su
h that

MSW =CP
1 \ {∞, s,−s} . (9.1.2)The parametrization in terms of u = 〈tr φ2〉 seems to make the setting more di�
ult. Thereason is that the inverse of 〈φ〉 7→ 〈tr φ2〉 has two roots in terms of u. Indeed, the analysis ofSeiberg and Witten revealed that the paramtetrization in 〈φ〉 yields a two-sheeted 
overingof MSW . Therefore, A, AD and in parti
ular F are not single-valued in u.The parti
le spe
trum for Seiberg-Witten theory is bound to satisfy the mass formula[DP99℄

Z (u)=na(u)+maD(u) , (9.1.3)whereby a and aD are the s
alar �eld 
omponents in A and AD , respe
tively, n 
orrespondsto an ele
tri
 
harge and m to a magneti
 
harge. By this means, the spe
trum 
an be reado� from some latti
e torus. In addition, ℑ(τ(u)) > 0 by requiring that ℑ(τ) shall serve as ametri
 on the spa
e of va
uum 
on�gurations a and aD [Bil96, SW94℄. The relation above(9.1.3) is the spe
tral torus des
ribing the massive parti
les in Seiberg-Witten theory. Thesingularities in MSW 
orrespond to those values of a and aD for whi
h the torus be
omessingular.
9.1.2 Modular TransformationsThe spe
tral torus does only deserve its name �torus�, if it is possible to prove that thephysi
s behind it is invariant under modular SL(2,Z) transformations. As already mentionedin se
tion 8.2.1, the orbit of a latti
e torus under SL(2,Z) 
olle
ts all equivalent tori. Thus, Iwill in the following explain that the partition fun
tion of Seiberg Witten theory is modularinvariant.
110



The Lagrangians
LA =

1

8π



∫

d2θ ℑ
[
τ(A)W αWα

]
+

1

2

∫
dθ4

(
AD

A

)†

I

(
AD

A

)
 , I =

(
0 i

−i 0

)
(9.1.4)are invariant under (

AD

A

)
7→ M (n)

(
AD

A

)
, M (n)=

(
1 n

0 1

)
, n ∈Z . (9.1.5)While M †I M = I , one obtains a shift of the 
oupling 
onstant τ= θ(u)

2π
+ 4πi

g 2(u)

τ=
dAD

dA
7→ τ+n (9.1.6)whi
h adds an, however, irrelevant term to the theta angle

τ(u)+n =
θ(u)+2nπ

2π
+

4πi

g 2(u)
. (9.1.7)To see this, I have used the 
onventions of Bilal, W αWα|θ2 = 1

4
(Fµν− iF̃µν)(Fµν − iF̃µν)+ . . .[Bil96℄ and the observation that sin
e 1

8π2

∫
S4 F ∧F ∈ Z the shift does not 
ontribute to thepartition fun
tion1

Z [u]= exp{

∫
d4x iLu} . (9.1.8)The partition fun
tion is further invariant under a duality whi
h inverts the gauge 
oupling.This is obtained by a Legendre transformation

FD (AD ) =F (A)− A AD , (9.1.9)su
h that
τD (AD ) =−

dA

dAD
=−

1

τ(A)
, (9.1.10)whilst the a
tion looks stru
turally as before with new 
onjugate 
oordinate ∂AD

FD = −A.How this transformation is implemented for the N = 1 formulation of the theory is dis
ussedin full detail in [Bil96, SW94℄. Physi
ally, it 
onstitutes an analyti
 extension of F to thestrong (respe
tively low) 
oupling regime. From another point of view, the a
tion of these
ond generator ex
hanges the r�les of aD and a and thus magneti
 and ele
tri
 
harges.For me it was important to note that the partition sum build from the Lagrangians Lu isindeed invariant under the ellipti
 modular group
SL(2,Z)= 〈

(
1 1

0 1

)
,

(
0 1

−1 0

)
〉 . (9.1.11)The a
tion of this group is thus well de�ned on the spe
tral torus whi
h 
onsequently deservesits name.

1This is an abuse of denotation. The partition function is rather Z =
∫
MSW

Z [u]du, for some appropriate measure

du on MSW .
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It is now suggestive to reinterpret the family of Lagrangians Lu and substitute the pa-rameter A(u) by the torus modulus τ(u). Thereby, Lu 7→Lτ and the family of Lagrangiansgets parametrized over the spa
e of inequivalent tori. This would be a �rst step towards aCFT approa
h to Seiberg-Witten theory.
9.2 The Spectral Curve and Triplet CharactersIn the following, I will explain how the family of Lagrangians Lu 
an be reformulated interms of τ. This was one main part in my publi
ation with M. Flohr, [VF07℄. At this time, wesear
hed after an expression of F in terms of 
hara
ters of the triplet model, whi
h was these
ond main part. This was en
ouraged by some former work of Flohr on a 
orresponden
ebetween Seiberg-Witten theory and the triplet model [Flo04, Flo98℄ and by a publi
ationof W. Nahm [Nah96℄. In his papers, Flohr 
ould express the spe
tral 
urve in terms of
orrelation fun
tions of the triplet model. Nahm, on the other hand, proposed that it shouldbe possible to 
ombine a and aD into a modular form of weight −1, for whi
h he noted downthe following expression in terms of τ:

c(τ) = aD (u(τ))−τa(u(τ)) ∼
η2(τ

2
)

η4(τ)
. (9.2.1)It is not possible to express c in terms of 
hara
ters of ordinary CFTs, sin
e they have havemodular weight zero. On the other hand, the 
hara
ters χ0 and χ1 of the triplet model
ontain both a term η2 whi
h has modular weight one. Therefore, it seemed reasonable totry to obtain c in terms of 
hara
ters of the triplet model. Indeed, we 
ould determine c interms of 
hara
ters of the triplet model but not the prepotential.I will now explain by whi
h steps c 
ould be arti
ulated solely by means of triplet 
hara
tersand by whi
h the prepotential F 
ould be determined as a fun
tion of τ.

9.2.1 The Spectral Curve in Terms of τThe Moduli spa
e MSW =CP
1 \{∞,±s} of Lu 
onforms with the moduli spa
e of the spe
traltorus, as follows from se
tion 9.1.1. Therefore, it is reasonable to relate to the spe
tral torusan algebrai
 
urve of the form

ỹ2 = (z − s)(z + s)(z −u) . (9.2.2)In analogy with the dis
ussion in se
tion 8.1.1, one 
an de�ne a di�erential one-form
˜̟ (z;u)=

dz

ỹ(z;u)
(9.2.3)with respe
t to the 
urve above, �x two bran
h 
uts [∞···u] and [−1 · · ·1] and a 
hoi
eof 
y
les, and derive the periods integrating over ˜̟ . In order to make use of the results
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of se
tions 8.1.2 and 8.1.3, I substitute z = 2z −1 under the 
orresponding integrals. Thistransforms the algebrai
 
urve above into the Legendre form su
h that
Π̃D (λ) = (2s)−

1
2

∫
α̟(λ)

Π̃(λ) = (2s)−
1
2

∫
β̟(λ)

, λ(u)=
u + s

2s
, (9.2.4)with ̟ as de�ned in (8.1.3). The periods thus obtained 
an be expressed in terms of (8.1.17)and de�ne a torus latti
e with moduli parameter

τ(λ) = i
F ( 1

2
, 1

2
;1|1−λ)

F ( 1
2 , 1

2 ;1|λ)
, (9.2.5)wherein λ is a fun
tion of u. Noti
e, that τ 
an dire
tly be related to the triplet model andbe derived by means of the twist �eld four-point fun
tions (8.2.7).In [E+85, Vol. 2, pg. 354f℄, I have found several 
hoi
es for the inverse λ(τ) of (9.2.5). Sin
eall of them are 
onne
ted by modular (i.e. SL(2,Z)) transformations, I 
hose without loss ofgenerality

λ(τ) =
(
θ3(τ)

θ2(τ)

)4

, (9.2.6)whereby
θ2(τ) = 2

∞∑

n=0

q(τ)
1
2

(n+ 1
2

)2

, θ3(τ) = 1+2
∞∑

n=1

q(τ)
1
2

n2

, θ4(τ) = 1+2
∞∑

n=1

(−)n q
1
2

n2

(9.2.7)are the Ja
obi theta fun
tions and as before q = exp{2πiτ}, 
f. se
tion 8.3.3. This 
hoi
e of
λ is in 
on
ordan
e with the publi
ations [HK07, ABK08℄, whi
h appeared during the timewhen M. Flohr and I published our work. Given λ, one obtains u by means of the relation in(9.2.4) and, after some Maple gymnasti
s, it was possible to express this quantity in termsof the Dedekind η fun
tion [VF07℄

u(τ) =
s

8

((
η(τ4 )

η(τ)

)8

+8

)
. (9.2.8)Substituting this for u yields a new parametrization of the family of Lagrangians Lu by τ.

The Periods of the Spectral CurveThe question remains, what a and aD look like in terms of τ. The periods Π̃D and Π̃ are notidenti
al with a and aD , however they are related by means of the modulus τ, demandingthat it equals the modulus of the spe
tral 
urve
τ=

ΠD

Π

!=
daD

da
⇔ ΠD (u)= ∂u aD (u) , Π(u)= ∂u a(u) . (9.2.9)
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Thus, a and aD 
an be derived from a one-form ̟SW , 
alled the Seiberg-Witten di�erential,whi
h satis�es ∂u̟SW = ˜̟ (u). Integrating this 
ondition, one ends up with
aD (u)=

∮

α
̟SW (u) , a(u)=

∮

β
̟SW (u) , ̟SW =

(z −u)dz

ỹ
+exa
t . (9.2.10)The solutions to these integrals have been derived in di�erent ways. One is by noting that for�xed 
ontours, the periods aD and a satisfy again some Hypergeometri
 di�erential equationwhi
h yields [Ler97℄

aD (u) =
i

4

p
s

(
u2

s2
−1

)
F

(
3

4
,

3

4
;2

∣∣∣∣1−
u2

s2

)
,

a(u)=
√

u

2
F

(
−

1

4
,

1

4
;1

∣∣∣∣
s2

u2

)
.

(9.2.11)Substituting the result for u(τ), this gives the spe
tral 
urve in terms of τ.
The Spectral Curve in Terms of Triplet CharactersThe se
ond main result of [VF07℄ was the modular one-form c, 
f. (9.2.1), expressed by
hara
ters of the triplet model. It is already 
lear that the denominator of this quantitymust 
ontain χ1 −χ0, sin
e it is a modular form of weight one. After some trials and errorswith series expansions in Maple, I 
ould prove that

c(τ) =
i
p

s

π

(χ− 1
8
−χ 3

8

χ1 −χ0

)
(9.2.12)with the 
hara
ters as in (8.3.8). This expression equals the one proposed by Nahm, 
f.(9.2.1) and [Nah96℄. Thus, up to the expli
it parameter τ, I have obtained a and aD interms of 
hara
ters, namely

a(τ) =−
dc(τ)

dτ
, aD (τ) =

(
1−τ

d

dτ

)
c(τ) . (9.2.13)Below, I will argue that the full prepotential 
an now be written as a fun
tion of τ.

The Prepotential in Terms of τM. Matone derived in [Mat95℄ the relation:
F (u)=

1

2
a(u)aD(u)− iπu . (9.2.14)This works as follows. The periods of the spe
tral 
urve (9.1.3) 
an be transformed under

SL(2,Z), whi
h leads to
a AD +b A = ÃD =

dF̃

dA

dA

dÃ
. (9.2.15)
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Integrating this expression, I �nd that
F̃ =

1

2
ac A2

D +
1

2
bd A2 +bc A AD +F . (9.2.16)The 
ombination

F (a)−
1

2
aaD (9.2.17)is invariant under the monodromy group of the spe
tral 
urve, whi
h is generated by

M∞ =
(
−1 2

0 −1

)
, Ms =

(
1 0

−2 1

)
, M−s = M−1

s ·M∞ . (9.2.18)This group 
an be determined by expanding (9.2.11) around u0 ∈ {∞,±s} and by letting
u en
ir
le ea
h of these points, i.e. u −u0 7→ exp{2πi}(u −u0), [Bil96, SW94, DP99, Ler97℄.Sin
e (9.2.17) is invariant under the monodromy group, it 
an be identi�ed with u, whi
hparametrizes the equivalen
e 
lass of periods a, aD under this group.Inserting the results on a and aD above and that on u, (9.2.8), I end up with

F (τ) =
1

2

[
τ

(
dc(τ)

dτ

)2

−c(τ)
dc(τ)

dτ

]
−

iπs

8

[(
η(τ

4
)

η(τ)

)8

+8

]
. (9.2.19)Thus, in our paper [VF07℄, Flohr and I obtained all basi
 quantities of SU (2) Seiberg-Wittentheory, in
luding the instanton 
ontributions, in terms of τ. In parti
ular, we determinedthe spe
tral 
urve by means of 
hara
ters of the triplet model.

g
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Conclusion 10In this thesis, I have been 
on
erning myself with geometry as a sour
e for a logarithmi
deformation of 
onformal �eld theories. In this 
ontext I have been investigating two di�erentgeometri
 s
enarios.The �rst has been the 
onformal supersymmetri
 bc-system on R
1×S1 with target manifold

CP
1. The sour
e for its logarithmi
 deformation is the extension of its lo
al representationspa
es to spa
es of distribution forms on CP

1. In parti
ular, the bosons had to be loga-rithmi
ally deformed, be
ause it turned out that they des
ribe the di�erent va
uum se
torswhi
h are 
ompounded by the instantons.The se
ond has been the purely fermioni
 
onformal bc-system, with domain on a bran
hed
overing of CP1 and with global monodromy group. This time, the target spa
e is C and thesour
e for the logarithmi
 deformation 
onsists in the twisted representations of the mon-odromy group.In order to 
on
lude my work, I will now bundle the questions whi
h remained open anddeserve further investigation from my point of view.
Bosons on Branched Coverings It would be interesting, also with an eye towards thesupersymmetri
 
onformal bc-system, to study bosoni
 ghosts on bran
hed 
overings. Therepresentations of the monodromy group are analogous to those of the fermions, and theoperator produ
t algebra is also quite similar. If the algebrai
 surfa
e is again a torus,it might be the 
ase that the four-point fun
tion of the bosoni
 twist �elds also revealsinformation about its periods for the following reason. It would be valuable, if there wasa way to not only bosonize the bosoni
 ghosts but also the bosoni
 twist �elds. Sin
ethe bosonized ghosts must be extended by an auxiliary fermioni
 system, I 
ould imaginethat similar works for the twist �elds, su
h that the situation might again be redu
ed to
onsiderations of fermioni
 ghosts on the torus.
Holomorphic Mappings between Compact Riemannian Surfaces The two s
enariosthat I have 
onsidered might be related by another publi
ation of Frenkel and Losev [FL07℄.There, the authors 
onsider the CSb
 with domain and target manifold CP

1. In general,the holomorphi
 fun
tions (i.e. solutions to the instanton equation) 
an be 
lassi�ed in threetypes: 
onstant fun
tions, meromorphi
 fun
tions and fun
tions with higher rami�
ations.
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Frenkel and Losev 
laim that the transition from the 
onformal CSb
 with target C
× tothe 
onformal CSb
 with target CP

1 must be a

ompanied by an in
lusion of meromorphi
fun
tions. Therefore, the solutions to the instanton equation must ex
eed the subspa
e of
onstant va
uum 
on�gurations. Consequently, Frenkel and Losev interpret the additionalmeromorphi
 fun
tions as instanton e�e
ts.They further propose that the CSb
 on CP
1 
an be modelled by the CSb
 on C

×, ifthe a
tion of the latter is enlarged by additional operators. These operators would thenmimi
 the extension of the va
uum 
on�gurations to meromorphi
 fun
tions. In [FLN08℄,the same authors proposed that those deformation terms in the a
tion are identi
al to theGrothendie
k-Cousin �elds.In appendix C, I have tried to prove that the approa
h of Frenkel and Losev [FL07℄ to theCSb
 on CP
1 is isomorphi
 to my approa
h in part one of this thesis. This was only su

essfulfor the Grothendie
k-Cousin operator and the representation spa
es. In parti
ular, I 
ouldnot determine an isomorphy between the respe
tive Grothendie
k-Cousin �elds.It would be favorable if the isomorphy did exist and 
ould be proven.

From the Large Volume Limit Back to Physics If the extended representation spa
esof the theories 
onsidered in part one of my thesis are indeed the nonperturbative statespa
es, a new kind of perturbation theory should be possible, whi
h does neither destroy thekinemati
s, indu
ed by the 
urved target spa
e, nor the topologi
al features � in parti
ularone retains all va
uum solutions, not running into the putative fa
tual 
onstraint to sele
t aparti
ular ba
kground. This new perturbation theory 
onsists in varying the s
aling paramter
λ of the metri
, thus moving away from the large volume limit in the moduli spa
e of metri
s.Frenkel, Losev and Nekrasov suggest to 
he
k if the non-diagonal representations of theHamiltonian disappear for �nite values of λ, by whi
h the anti-instantons get reanimated,[FLN06, pg. 89f℄. There is an even more important reason for trying this kind of perturbationtheory. The state spa
es in the large volume limit have been obtained by a su

ession oftransformations of the physi
al spe
trum of the unitaryMorse theories underlying the modelsunder 
onsideration. The rationale was to derive the perturbative spe
trum, multiply it bysome exponential by whi
h unitarity is broken, go to the large volume limit and derive thenonperturbative states by a 
onje
ture. The way ba
k to physi
s would 
onsequently beto turn the s
aling parameter �nite and divide the proposed nonperturbative states by theexponential whi
h broke unitarity. It is inevitable to apply the perturbation theory des
ribedabove in order to obtain information about the former physi
al theory. If the 
onje
ture onthe nonperturbative state spa
es was 
orre
t, one would thereby gain information on thenonperturbative se
tor of the (more) physi
al theory.
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The Prepotential of Seiberg-Witten Theory Maybe I was wrong and, after all, it is pos-sible to express the moduli parameter u, 
f. (9.2.8), of pure gauge SU (2) Seiberg-Wittentheory in terms of 
hara
ters of the triplet model. At least, I did not prove the 
ontrary.One should look for 
ombinations of the 
hara
ters that are invariant under the monodromygroup (9.2.18) of the spe
tral torus.
The Partition Function of Seiberg-Witten Theory It would be ni
e if the partition fun
-tion of pure gauge SU (2) Seiberg-Witten theory 
ould be written in terms of 
hara
ters ofsome CFT. In [NO03℄, N. Nekrasov and A. Okounkov 
laim that the dual partition fun
tionequals a 
orrelation fun
tion of free fermions, and possibly the 
orresponding CFT 
an bespe
i�ed.
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Topological Field Theories AIn this 
hapter, I will spe
ify what I understand under the topologi
al se
tor of a �eld theory.This short summary is along the lines of [BBRT91, Wit82, Wit88a, Wit88b℄.Let (X , g ) be a symple
ti
, oriented Riemannian manifold with Eu
lidean metri
 g , (Σ,h)another su
h manifold and x : Σ→ X an embedding. The �elds will be se
tions of some Z2graded ve
tor bundle over Σ, and I assume that there exists an a
tion for the �eld theory.The ingredients of the topologi
al se
tor are:
➀ An operator Q, the BRST 
harge, wi
h is odd graded and globally de�ned on X and

Σ. The BRST 
harge has a nilpotent a
tion on the �elds and state spa
es.
➁ Topologi
al state spa
es and topologi
al observables in the 
ohomology of the BRST
harge. Furthermore, I assume that the state spa
es have dual ve
tor spa
es and awell de�ned pairing. The 
ohomology of Q is invariant under smooth variations of themetri
s g and h.
➂ Even graded and Q-exa
t �elds Tg and Th , the stress tensors with respe
t to X and Σ.In other words, the Lagrangian must be a 
ombination of terms that are Q-exa
t ormetri
 independent.
➃ Correlation fun
tions whi
h 
an be obtained from a path integral. They vanish if oneplugs into them a Q-exa
t observable and Q-
losed �elds.
➄ A transformation of the a
tion into a �rst order form by whi
h the toplogi
al se
torlo
alizes on the va
uum 
on�gurations and ex
lusively on the instantons.What 
onsequen
es follow from these attributes? If Σ ⊆ R×M , there exists a generatorof time translations H =

∫
M Th 00. This operator is Q-exa
t and all 
orrelation fun
tions of

Q-
losed �elds vanish if it is inserted. Consequently, the topologi
al se
tor does not 
ontaindynami
al �elds.For the same reason, if a topologi
al and a Q-exa
t observable is inserted into the 
orre-lation fun
tion and one varies it with respe
t to the metri
s h or g , the variation vanishes.Therefore, the values of the 
orrelation fun
tions in the topologi
al se
tor do not dependon the metri
s de�ned on Σ and X . In physi
s, su
h di�eomorphism invariants are 
alled�topolgi
al invariants�, and the topologi
al se
tor of a �eld theory is said to be generally
ovariant. In this thesis, I use the term topologi
al in this sense.Provided that the a
tion is Q-exa
t, the topologi
al se
tor is invariant under global s
aletransformations of h and g , namely for any set of topologi
al observables the variation of thepath integral in the s
aling parameter yields a 
orrelation fun
tion of a Q-exa
t operator.Theories with Q-exa
t a
tions are 
alled 
ohomologi
al, and I will only deal with this 
lass.
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Due to invarian
e under global s
ale transformations, the 
orrelation fun
tions lo
alize onthe 
lassi
al solutions, and the topologi
al se
tor is semi
lassi
ally exa
t.Invarian
e under global s
alings does not signify that the theory is 
onformally invariant.This additionally requires invarian
e under analyti
 lo
al res
alings of the respe
tive metri
.
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From the Sigma to the A-Model BIn this se
tion I want to note down the symmetries of the N = (2,2) supersymmetri
 sigmamodel and explain how the A-model is derived by the twisting pro
edure, 
f. [Mar05℄. Letthe 
onventions be as in 
hapter 3. The topologi
al A-model and the sigma model with
N = (2,2) worldsheet supersymmetry di�er in the spin of the fermioni
 �elds and otherwisehave the same a
tion (3.1.1). The supersymmetry is generated by QαI , where I = +,− arethe inde
es of the R-
harge and α=+,− the Lorentz inde
es of the U (1) Lorentz symmetry:

[Qα+,Qβ−] = γ
µ

αβ
Pµ , [J (e),Q±I ] =±

1

2
Q±I . (B.0.1)The bra
ket is a super
ommutator and J (e) is the generator of Lorentz transformations. Thegamma matri
es are γ1

αβ
= δαβ and γ2

αβ
= diag(i,−i), and the super�elds transform under

δ= καI QαI (καI is a Grassmann valued 
onstant), 
f. [Mar05, pg 73℄:
δxa =κ++ ψa +κ−+ πa , δx ā =κ−− ψā +κ+− πā ,
δψa = 2iκ+− ∂z xa −κ−+

Γ
a
bc
πbψc , δψā = 2iκ−+ ∂z̄ x ā −κ+−

Γ
ā

b̄c̄
πb̄ψc̄ ,

δπa = 2iκ−− ∂z̄ xa +κ++
Γ

a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (B.0.2)These are the supersymmetries of the sigma model.The internal R-symmetry allows for an axial and a non-anomalous ve
torial fermioni
 U (1)
urrent:

J (v)
z =−iλ : gab̄π

b̄ψa : , J (v)
z̄ =+iλ : gab̄π

aψb̄ : ,

J (a)
z =−iλ : gab̄π

b̄ψa : , J (a)
z̄ =−iλ : gab̄π

aψb̄ : .
(B.0.3)They generate rotations of the fermionsve
t: (πā ,ψa ) 7→ eiθ(πā ,ψa ) , (πa ,ψā ) 7→ e−iθ(πa ,ψā)axial: (ψa ,ψā) 7→ eiθ(ψa ,ψā ) , (πa ,πā) 7→ e−iθ(πa ,πā) .
(B.0.4)The super
harges transform a

ording to these symmetries as

[ J (v)
z 0 ,Q+±] =±Q+± , [ J (v)

z̄ 0
,Q−±] =∓Q−± ,

[ J (a)
z 0 ,Q+±] =±Q+± , [ J (a)

z̄ 0
,Q−±] =±Q−± ,

(B.0.5)su
h that in parti
ular [J (a)
0 ,Q] =Q and the 
ohomology of Q is graded by the axial 
harge.In general, the axial U (1) symmetry is (partially) broken.
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B.1 Twisting/Gauging the Sigma ModelI will now spe
ify the �elds for the sigma model, the A-model 
an then be obtained by arede�nition of the Lorentz generatorJ (e). This pro
edure is 
alled twisting or gauging.To make the transformation properties of the fermioni
 �elds under Lorentz transforma-tions expli
it, I will introdu
e the spin-
onne
tion ω, pretending that Σ is not �at. Thefermions have now the properties πa
z̄ , ψa ∈Γ(Σ,S±⊗x∗(T X )) and πā

z , ψā ∈Γ(Σ,S±⊗x∗(T X̄ )).The bar over the latter tangent bundle denotes a se
tion into the anti-holomorphi
 part,
S± are the spinor bundles of positive and negative 
hirality and Γ means a se
tion. The�elds ψa and πā

z have spin +1
2 and the other fermions have spin −1

2 . The 
onne
tion on
S±⊗x∗(T X )→Σ is obtained by D= D(S) ⊗1x∗(T X ) +1S ⊗x∗(D(T X )), for instan
e

Dz̄ψ
a = ∂z̄χ

a +
i

2
ωz̄ψ

a +Γ
a
bc∂z̄ xbψc . (B.1.1)Under the ve
torial symmetry, ψa and πa

z̄ transform with weight +1
2
while the others haveweight −1

2 and the bosons are invariant. The transformation properties of the super
hargesare listed below, and I in
luded already the e�e
t of rede�ning the Lorentz group:
Ue (1)×Uv (1) Ue ′(1)×Uv (1)

Q++ (+1
2 ,+1) (0,+1)

Q−+ (−1
2 ,+1) (1,+1)

Q+− (+1
2 ,−1) (−1,−1)

Q−− (−1
2 ,−1) (0,−1)

(B.1.2)

This rede�nition is a

ording to J (e ′) := J (e) − 1
2 J (v).1 Sin
e it is not possible to dis
riminateeither of the U (1) symmetries, this rede�nition is an equivalen
e relation of the theory in
ase Σ is �at. One then still has the full supersymmetry. However, when passing to non-�atdomain manifolds, only the s
alar super
harges survive, for they do not depend on the metri
or any related quantities su
h as the Levi-Civita 
onne
tion.After twisting it is reasonable to de�ne new symmetry 
harges, a s
alar and a one formon Σ, as follows:

Q :=Q+++Q−− , Gz :=Q+− , G z̄ :=Q−+ . (B.1.3)They are subje
t to the propery Q2 = 0, [Q ,Gµ] = Pµ and de�ne the topologi
al algebra of thethus obtained A-model with BRST 
harge Q. The fermions have a new spin with respe
tto J (e ′). The �eld ψ is a Grassman valued s
alar �eld while π = πza dzdxa +πz̄ ā dz̄dx ā isa selfdual one-form. This explains why twisting is the same as 
oupling the theory to the
Uv (1) 
urrent (i.e. �gauging� the theory) a

ording to S 7→ S+ 1

4

∫
Σ

hµνωµ J (v)
ν . With respe
t to

1The choice of sign is for convenience and follows [Mar05, Wit88b].
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Q, the �elds now transform with δ := κQ , κ−− = κ = κ++, k±∓ = 0 and the rest 
an be reado� tabular B.0.2:
δxa = κχa δx ā = κψā

δψa = 0 δψā = 0

δπa
z̄ = 2iκ ∂z̄ xa +κ Γ

a
bc
πb

z̄ψ
c δπā

z = 2iκ ∂z x ā +κ Γ
ā

b̄c̄
πb̄

zψ
c̄

(B.1.4)From that tabular one also �nds that there is a fermioni
 �xed point on the holomorphi

∂z̄ xa = ∂z x ā = 0 embeddings. These are 
alled instantons.2

2For J (e′) = J (e) + 1
2 J (v), the BRST charge would be Q =Q+−+Q−+ and localization is on the anti-instantons ∂z xa =

∂z̄ x ā = 0.
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The Toric CSbc - Unfinished CFrenkel et al. [FLN08℄ use a di�erent representation of the CSb
 in order to derive theGrothendie
k-Cousin operators. It goes ba
k to a publi
ation of Borisov [Bor01℄ and hastwo promising features. Firstly, the �elds in the CSb
 are not bosonized and the assumedGrothendie
k-Cousin �eld is also expressed in terms of the original �elds. Se
ondly, it islinked to another work of Frenkel with Losev [FL07℄, in whi
h they already proposed thatthe Tb
 on CP
1, 
onsidered as a CSb
, should be deformed beyond its topologi
al se
tor.In [VF09℄ I used Frenkels and Losevs formalism in addition to the one des
ribed in se
tions3.6.2 and 3.6.3. Thereby, I wanted to mat
h my results with those of Frenkel et al. in [FLN08,FL07℄. Be
ause it 
on
erned my own investigations, I will brie�y dis
uss the question if bothapproa
hes are isomorphi
. Unfortunately, I 
ould not identify the Grothendie
k-Cousin�elds, whereas I might have found a positive result for their zero modes, the Grothendie
k-Cousin operators.

C.1 Deformation by Holomorphic CompletionThere exists another paper of Frenkel with Losev [FL07℄, wherein the authors 
onsider theTb
 without �gauge� �eld. One of the subje
ts was the question, how to ta
kle that theoryif formulated on nontrivial target spa
es. The idea of the authors was as follows.Frenkel and Losev started with the assumption that if Σ= CP
1 and X = C/2πiZ, the Tb
is an ordinary CSb
. Sin
e Σ is 
ompa
t, the solutions of the instanton equation ∂z̄ x = 0are the 
onstant embeddings, whi
h they interpret as va
uum 
on�gurations. Thus, thiss
enario only allows to take insight into the topologi
al se
tor.If, however, X was 
ompa
ti�ed to CP

1, there appear further nontrivial holomorphi
 map-pings, 
f. [Jos02℄, whi
h Frenkel and Losev 
onsequently interpret as instanton solutionsbeyond the topologi
al regime. It is not 
lear if the Tb
 with target CP1 is 
onformal. How-ever, Frenkel and Losev they assumed that this is the 
ase if the target spa
e is C/2πZ.Therefore, they sear
hed after a method whi
h allows to redu
e the situation of X =CP
1 tothe free CSb
 on C/2πiZ, however, now deformed by additional operators. These operatorssupposedly give an insight into the dynami
al se
tor of the Tb
 and, hen
e, must inheritsome information about the lo
al geometry of the Tb
 on CP

1.By taking out of Σ sets of pairs of zeros and poles ω±
k
, Frenkel and Losev supplementedthe 
onstant holomorphi
 by meromorphi
 embeddings, 
onstant as CP1 \{ω±

k
} →C/2πiZ and

127



with simple poles and zeros at ω±
k
, k ∈ N. Thus, they end up with a sta
k of 
overings

x : CP
1 →CP

1, distinguished by the number k of singular points of x. Noti
e, however, thatthe 
overings are not bran
hed sin
e Frenkel and Losev did negle
t the embeddings withhigher rami�
ation.Frenkel and Losev interpreted the meromorphi
 fun
tions as a generalization of the CSb
by an in
lusion of instantons, whereby the degree k measures the instanton se
tor. Sin
e thesingularities of those fun
tions should appear in their va
uum expe
tation values, Frenkeland Losev 
on
luded that the a
tion of the CSb
 with target C/2πiZ must be deformed. Inorder to analyze that, they made a 
hart transition to logarithmi
 
oordinates as des
ribedin se
tion 3.5.1. This is also reasonable be
ause the equivalen
e 
lasses C/2πiZ are naturallyexpressed by means of the exponential. The va
uum expe
tation value of an instantonsolution should now yield
〈φx (z)〉S+δS = c +

n∑

i=1

[log(z −ω+
i )− log(z −ω−

i )] , (C.1.1)where S +δS is the deformed CSb
 a
tion. Frenkel and Losev proposed that this 
hange inthe a
tion is 
aused by an additional term
δL(z, z̄) =−λ[Ψ+(z, z̄)+Ψ−(z, z̄)]π(z)π̄(z̄) , λ= 1, (C.1.2)withΨ±(z, z̄)=Ψ±(z)Ψ̄±(z̄), Ψ±(z) = exp{±i

∫z
p(ω)dω} and, similar, Ψ̄±(z̄)= exp{±i

∫z̄
p̄(ω̄)dω̄}.Be
ause λ is dimensionless, this deformation 
an be interpreted as a movement in the modulispa
e of 
onformal theories.By means of a method of Zamolod
hikov [Zam89℄, Frenkel and Losev 
al
ulated the impa
tof these deformations on general �elds F (z) of the CSb
. This amounts to applying theStokes-Green theorem (integral of motion) to1

∂z̄ Fδ(z, z̄) =
∮

z
dζ δL(ζ, z̄)F (z). (C.1.3)Of parti
ular interest are the deformations of the stress tensor and the super
harge. A
al
ulation reveals that the stress tensor is not deformed, whereas the integral of motion forthe super
harge yields

Q̃ =
∮{

dz Qδ(z, z̄)+dz̄ [Ψ+(z, z̄)−Ψ−(z, z̄)] π̄(z̄)
}

, (C.1.4)whi
h is similar to the expression in [FL07, pg. 67℄.Frenkel et al. refer to these results in their later work [FLN08, pg. 97℄. They propose thatthe zero modes of the operators in (C.1.2)
iπ(z)Ψ−(z) , − iπ̃(z)Ψ̃+(z) , (C.1.5)

1This integral of motion is the first order correction (in λ) to ∂z̄ F = 0 [Zam89]. In principle, since λ is dimensionless,

one has to include corrections to all orders.
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are identi
al with the 
ohomology operators η0η̄0 in the 
ontext of 
hiral bosonization, andmoreover with the Grothendie
k-Cousin operators [FLN08, pg. 93f℄. They 
on
lude that thesuper
harge in the 
ontext of their later work is deformed just the same way as in (C.1.4),[FLN08, pg. 97℄.Sin
e the integral of motion (C.1.3) does not introdu
e the Grothendie
k-Cousin operators,I looked for another CFT method that would deform the stress tensor in the appropriateway and also the super
harge a

ording to (C.1.4). This was the method by Fjelstad et al.[FFH+02℄, that I used in 
hapter 4. By that means, I derived a deformation of the stresstensor and of the super
harge whi
h was similar to [FL07, FLN08℄, 
f. [VF09℄. In the samepubli
ation I 
ould also argue, that the 
ohomology of the deformed super
harge on the statespa
e is not 
hanged by the deformation. Thus, everything seemed to be ni
e.However, I did not 
he
k if the assumed Grothendie
k-Cousin �eld of (C.1.2) is well de�nedon the 
harged representation spa
es, whi
h is mandatory. Nor did I really extend Borisovsvertex algebra to 
harged representations and then prove isomorphism to the representationsI have 
onsidered in 
hapter 3. Some steps into that dire
tion I have done, however onlysuper�
ially, in [VF09℄, and in this 
hapter I wanted to 
omplete them. However, I 
ouldnot determine either the representation spa
es 
orre
tly, or the �elds in (C.1.2) 
an notbe the Grothendie
k-Cousin �elds, though their zero modes satisfy the properties of theGrothendie
k-Cousin operators.
C.2 The Cohomology Operators in Logarithmic CoordinatesIn order to simplify my dis
ussion, I will set the homogeneity µ to zero.The CSb
 in logarithmi
 
oordinates, 
f. se
tion 3.5.1, does not 
over the situation of theCSb
 on C/2πiZ. Sin
e the exponential is invariant under 2πiZ, the �eld algebra should beextended by some winding number operator Ω and its 
onjugate Ω

∗ : [Ω,Ω∗] = 1. This yieldsBorisovs' vertex algebra [Bor01℄, whi
h is 
onstituted by
φx (z) =: eW (z) : , φip (z) =: e−W (z)[−∂zU (z)+ j+(z)] : ,

φψ(z) =: eW (z)ψ(z) : , φiπ(z) = i : e−W (z)π(z) : ,
(C.2.1)and the symmetrie �elds

φ j+(z) = j+(z)+∂zW (z) , φ j−(z) =− j+(z)+∂zU (z) ,

φG (z) = i : π(z)∂zW (z) : , φQ(z) =Q(z)+∂zψ(z) ,

φT (z) =− : ∂zW (z)∂zU (z)+ i∂zψ(z)π(z) : .

(C.2.2)Above I used Q(z) =−i : ∂zU (z)ψ(z) : and
U (z) =Ω

∗− i

∫′ z

p(ω)dω , W (z) =Ω log z +x(z) , (C.2.3)
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and the prime at the integral means that no additional �integration 
onstant� should beintrodu
ed.Borisov interprets U and W as the s
alar �elds related to 
ertain �
urrents� of bosonson a two dimensional latti
e, su
h that in analogy with (3.6.11) W (z) = −
∫z

J (1)(ω)dω and
U (z) = −

∫z
J (2)(ω)dω, with J (1)(z) = −Ωz−1 −∂z x(z) and J (2)(z) = ip(z). The Heisenberg Lie
ommutation relations are only satis�ed between J (1) and J (2), [J (1)

n , J (2)
m ] =−nδn,−m . Further,

[U0, J (1)
0 ] =−[Ω∗,Ω] = 1, as is expe
ted for �bosoni
� 
urrents, while [W0, J (2)

0 ] = [x0, ip0] =−1.A

ording to the idea to interpret the 
urrents as two 
omponents on a latti
e, it is nowreasonable to 
onsider �elds V (l , s, z)=: elW (z)+sU (ω) : , l , s ∈Z.I will 
all the vertex algebra de�ned by (C.2.1), (C.2.2) and extended by V (0, s, z) as thetori
 CSb
.
Remark In the 
ontext of the 
hiral de Rham 
omplex, the introdu
tion of V (0, s, z) meansthat one has to generalize the state spa
e further to power series in the zero modes p0. Thisis a �rst instan
e wherein Borisovs' 
onstru
tion exeeds the usual CSb
.
Representation SpacesIn order to in
lude 
harged representations, I de�ne |p, q |l , s〉 ∈ F (p, q |l , s) := F (p|l , s)⊗M+(q)and try the Ansatz

xn |p, q |l , s〉 = 0, n >−p , n 6= 0 , pn |p, q |l , s〉 = 0, n ≥ p , n 6= 0 ,
ip0 |p, q |l , s〉 = l |p, q |l , s〉 , Ω |p, q |l , s〉 = s |p, q |l , s〉 ,
ψn |p, q |l , s〉 = 0, n >−q , πn |p, q |l , s〉 = 0, n ≥ q . (C.2.4)This ex
eeds the dis
ussion of Borisov [Bor01℄ who 
onsidered the situation p = q = 0. It willnow be ne
essary to see if the operator produ
t algebra is well de�ned on the representationsabove.Firstly, the representation spa
es for the tori
 CSb
 must in
lude states that are iso-morphi
 to V (l , s, z). This isomorphism is obtained by exp

{
l ′x0

}
|p, q |l , s〉 = |p, q |l + l ′, s〉 and

exp
{

s′Ω∗}
|p, q |l , s〉= |p, q |l , s + s′〉. In the language of vertex operators,

Y
(
|0,0|l ,0〉, z

)
= exp{lW (z)} , Y

(
|0,0|0, s〉, z

)
= exp{sU (z)} . (C.2.5)This makes expli
it that the vertex algebra de�ned by (C.2.1) does not lead out of a spe
i�
representation with a �xed value of s, sin
e it does not in
lude Ω
∗. I will denote by F (p, q |l , s)the vertex algebra of these �elds with �xed value s and Ω

∗ ex
luded. Moreover, I de�nenormal ordering in the �eld modes to be taken with respe
t to |0,0|0,0〉.In the representation F (p, q |l , s), the �elds of (C.2.1) have the OPEs
φx (z)φip (ω) =

−1

z −ω

( z

ω

)p+s
, φψ(z)φiπ(ω) =

−1

z −ω

( z

ω

)q+s
. (C.2.6)
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When a
ting on a highest weight state, the mode expansions of the �elds inherits the inho-mogeneity in terms of a shift in the index, for instan
e
φx (z)|p, q |l , s〉 = zs

∞∑

n=0

cn(|z|)z−n |p, q |l , s〉 = ex0
∑

n≤−p−s, n 6=0

(φx )n+s z−n |p, q |l , s〉 (C.2.7)and similar for the other �elds. In parti
ular, up to the spe
ial r�le of x0, when s = 0, the�eld mode expansion equals that for the CSb
. Thus, the CSb
 has a representation on therepresentation spa
es above. The OPEs between the symmetry �elds and the dynami
al�elds (C.2.1) follow a

ordingly.The 
onformal weights and U (1) 
harges of the highest weight states equal
∆φT

(|p, q |l , s〉)=−
1

2
p(p −1)+

1

2
q(q −1)+ l s ,

(φ j−)0 |p, q |l , s〉 = q − l , (φ j+)0 |p, q |l , s〉 =−q + s ,

(C.2.8)and the operators measuring these quantum numbers 
ommute with ea
h other. The �eld
V (l ′, s′, z) shifts the 
onformal weight of |p, q |l , s〉 by

T0 ·el ′x0+s ′Ω∗
|p, q |l , s〉 = (l s′+ l ′s) |p, q |l + l ′, s + s′〉 , (C.2.9)and has a bosoni
 and fermioni
 U (1) 
harge of value −l ′ and 0, respe
tively. In the subse
torwith s = 0 and Ω

∗ ex
luded, all �elds in (C.2.1) have the same 
onformal weights and U (1)
harges as the �elds of the usual CSb
, wi
h follows from the OPEs and se
tion 3.5.1, andthere is not operator leading out of that representation.
OPEs of the Operators V (l , s, z)If I restri
t my dis
ussion to the 
onformal va
uum |0,0|0,0〉, I 
an derive an OPE betweenthe �elds V (l , s, z) :

esU (z)elW (ω) = (z −ω)−l s : esU (z)elW (ω) : , in F (0,0|0,0) . (C.2.10)It turns out, however, that I am not able to ta
kle the OPE in the 
harged representationspa
es in any reasonable way. Namely, if p 6= 0, I �nd that
exp

[
−i

∫z

p(ζ)x(ω)dζ

]
= exp

[
−

∫z (
ω

ζ

)p dζ

ζ−ω

]
. (C.2.11)

Remark It seems that the 
harged representations that I have de�ned do not lead to ni
eresults for the OPE betweeen elW and esU .
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Identification of the CSbcDue to the results above, the CSb
 is a subse
tor of the tori
 CSb
 with s = 0 and Ω
∗ex
luded. I will now identify the bosoni
 and fermioni
 parts of the CSb
 within F (p, q |l ,0).Noti
e, that the term �identi�
ation�, signi�ed by �≃�, is only appropriate up to the spe
ialr�le played by x0.The representations F (p, q |l ,0) are graded by the bosoni
 and fermioni
 U (1) 
harges,

F (p, q |l ,0)=
⊕

n,m∈Z
F (p, q +n|l +n −m,0) , (C.2.12)whereby n and m 
ount the fermioni
 and bosoni
 
harges, respe
tively. I made no distin
tionbetween ⊕

n M+(q)n and ⊕
n M+(q −n), sin
e the fermioni
 representation spa
es are allisomorphi
, 
f. (3.4.2).

The Fermionic Subsector The fermioni
 part of the CSb
 appears in the tori
 CSb
 asthe subspa
e F (0, q |q,0) ≃ M+(q). Indeed, φψ and φiπ have the 
orre
t OPE on |0, q |q,0〉and the appropriate quantum numbers with respe
t to T +(z) and φ j+(z). In parti
ular, thisholds for |0, q |q,0〉, su
h that I set |0, q |q,0〉 ≃ |q〉+ ∈ M+(q).
The Bosonic Subsector The bosoni
 subse
tor is given by F (p,0|−p,0) ≃ N (p). Namely,the �elds have the 
orre
t OPE on |p,0|−p,0〉 and the quantum numbers as expe
ted, su
hthat I set |p,0|−p,0〉 ≃ν−p ⊗|0〉ηξ ∈ N (p).
The Grothendieck-Cousin OperatorsIn order to derive the Grothendie
k-Cousin operators, I used the re
ipe to extend the bosoni
representation spa
e by the missing degenerate part, 
f. se
tions 2.6.2 and 3.6.3. The a�e
tedrepresentation spa
e takes now the form F (1,0|−1,0) and I have to look for a state that hasthe same quantum numbers as the hightes weight ve
tor |1,0|−1,0〉.The states |p,0| − p,0〉 , | − p + 1,0|p − 1,0〉 and |p − 1,1| − p + 1,1〉 do all have the same
onformal weight, but only |p,0| −p,0〉 and |p −1,1| −p +1,1〉 have the same U (1) 
harges(both with respe
t to the bosoni
 and the fermioni
 
harge). Therefore, the analogue of
eφ

−
0 ξ0 : N (1) → N (1) should be the mapping e0 : |1,0|1,0〉 7→ |1,1|1,1〉. Moreover, I proposethat the logarithmi
 extension NL(1) is now the representation of (C.2.1) on |0,1|0,1〉, and Iwill denote that by FL(1,0|−1,0),In analogy with the dis
ussion in se
tion 3.6.3, I am looking for an operator g, su
h that

F (1,0|−1,0) ∋ |1,0|−1,0〉 e0→ |0,1|0,1〉 ∈ FL(1,0|−1,0)

↓ g

|0,0|0,0〉 ∈ F (0,0|0,0)

. (C.2.13)
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The operator
g= iπ0e−Ω

∗
(C.2.14)does the job. Moreover, it satis�es ∮

0 dω [g,φ(ω)] = 0 for all �elds φ in (C.2.1). Therefore,the sequen
e
· · ·→ F (p,0|−p,0)

g−→ F (p −1,0|−p +1,0) →··· (C.2.15)is exa
t, whereby F (p,0|−p,0) = F (p,0|−p,0)⊕FL(p,0|−p,0) are the extended representationspa
es.In that respe
t, it is reasonable to identify g with the 
ohomology operator η0 in se
tion3.6.3, and with the Grothendie
k-Cousin operator.
The Grothendieck-Cousin FieldTo generalize the operator above to the Grothendie
k-Cousin �eld, it is at hand to try theAnsatz

i : π(z)e−U (z) : . (C.2.16)Indeed, when the �elds φ of (C.2.1) are in the representation F (0,0|0,0), one may 
al
ulatethe OPEs by means of (C.2.10) and derive that
∮

z
dω i : π(z)e−U (z) : φ(ω) = 0. (C.2.17)For instan
e, use

iπ(z)e−U (z)φip (ω) =−
i : π(ω)e−U (ω)−W (ω) :

(z −ω)2
. (C.2.18)This 
al
ulation, however, turns nontrivial if the representation spa
e is 
harged, 
f. (C.2.11).For that reason, I 
ould not derive the Grothendie
k-Cousin �eld in terms of Borisovs' vertexalgebra.
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