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Zusammenfassung

In dieser Arbeit behandele ich die Verbindung von Geometrie und logarithmisch konformen
Feldtheorien. Dabei betrachte ich zwei verschiedene geometrische Situationen: in Teil I das
topologische A-Modell mit Einbettungsabbildung x: Rx S' — CP! und in Teil II konforme,

fermionische Geister auf dem Torus.

Das A-Modell lésst sich in eine Form bringen, in der das Pfadintegral eine §-Distribution
auf dem Modulraum der Instantonen ist. Integriert man die Abhiingigkeit von S! heraus, er-
hiilt man eine Morsetheorie auf der universellen Uberlagerung LCP! des Loop-Raumes. Deren
Niedrigenergie-Zustandsrdume lassen sich in Zellen dieser Mannigfaltigkeit stérungstheo-
retisch bestimmen und durch Darstellungsraume des Chiralen de Rham-Komplexes beschrei-
ben. Unter der Annahme, dass die Darstellungstheorien des A-Modelles und des Chiralen
de Rham Komplexes iibereinstimmen, betrachte ich im Folgenden den Chiralen de Rham-
Komplex. Die Zustandsrdume sind lokale, induzierte Darstellungen der Symmetrie, die durch
das Gradientenfeld der Morsefunktion erzeugt wird. Entsprechend einer Hypothese von E.
Frenkel, A. Losev und N. Nekrasov fiihrt eine Verallgemeinerung dieser lokalen Darstellungen
als Distributionen auf LCP! zu quantenexakten Zustdnden der Theorie. Auf diesen Zustin-
den muss der Hamiltonoperator durch zusétzliche Terme korrigiert werden. Ich diskutiere die
Darstellungstheorie der quantenexakten Zusténde und bestimme die Deformationsterme des
Hamiltonoperators. Ich zeige, dass diese eine geometrische Deutung als Kohomologieopera-
toren in einem Komplex global erweiterter lokaler Darstellungsraume haben. Zuletzt zeige
ich, dass den zusétzlichen Termen im Hamiltonoperator der Morsetheorie eine logarithmische

Erweiterung des chiralen de Rham-Komplexes entspricht.

Die konformen, fermionischen Geister aus Teil II transformieren sich in irreduziblen Darstel-
lungen der Monodromiegruppe Z,. Ich zeige, dass die durch sie beschriebene konforme
Feldtheorie logarithmisch erweitert werden muss, sobald man zu den Darstellungen der
Monodromiegruppe Felder assoziiert, die sich frei auf dem Parameterraum CP'\ {0, 1,00}
bewegen. Das Tripletmodell stellt eine minimale logarithmische Erweiterung dieser Theorie
dar und bildet die Grundlage meines letzten Kapitels. Darin driicke ich die spektrale Kurve
der SU(2)-Seiberg-Witten Theorie durch die Charaktere des Tripletmodelles aus, und fiihre
ebenfalls das Priapotential auf dieses Modell zuriick, indem ich es als Funktion des Modulus

der spektralen Kurve gewinne.

Schlagworte: Nichtlineares Sigma Modell, Logarithmisch Konforme Geister, Seiberg Wit-

ten Theorie



Abstract

This thesis is about the relation of geometry and logarithmic conformal field theories. I
consider two different geometric settings: in part I the topological A-model with embedding

x: RxS'— CP!, and in part II conformal, fermionic ghosts on the torus.

The A-model can be transformed such that the path integral yields a § distribution on
the moduli space of instantons. Integrating out the dependency on S!, one obtains Morse
theory on the universal cover LCP! of loop space. Its low-energy state space can be derived
perturbatively in cells of this manifold, and can be modelled by the representations of the
chiral de Rham complex. Assuming that the representation theory of the A-model and
the chiral de Rham complex are identical, T consider the chiral de Rham complex in the
following. The state spaces are local, induced representations of the symmetry generated by
the gradient vector field of the Morse function. According to a conjecture of E. Frenkel, A.
Losev and N. Nekrasov, a generalization of these local representations as distributions on
LCP! leads to nonperturbative states of the theory. On these states, the Hamiltonian must
be corrected by additional terms. I discuss the representation theory of the nonperturbative
states and determine the terms which deform the Hamiltonian. They have a geometric
significance as cohomology operators in a complex of globally extended local representation
spaces. Eventually, T prove that a logarithmic extension of the chiral de Rham complex

corresponds the additional terms in the Hamiltonian.

The conformal, fermionic ghosts of part IT transform in irreducible representations of the
monodromy group Z,. I show that the conformal field theory of these fields has to be loga-
rithmically extended as soon as the representations of the monodromy goup are allowed to
move freely on the parameter space CP!\{0,1,00} of the torus. The triplet model consti-
tutes a minimal logarithmic extension of this theory and is fundamental for my last chapter.
Therein I obtain the spectral curve of SU(2) Seiberg-Witten theory in terms of characters of
the triplet model. Further, I trace back the prepotential to that model by expressing it as a

function of the torus modulus of the spectral curve.

Keywords: Nonlinear Sigma Model, Logarithmic Conformal Ghosts, Seiberg Witten Theory
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Infroduction 1

This thesis was initiated by my interest in the relation between geometry and physics. It was
since I got to know the publication of V. G. Knizhnik [Kni87]| that I wanted to investigate

the geometric significance of the aspects which render a conformal field theory logarithmic.

Knizhnik considers holomorphic differential forms on algebraic surfaces which are branched
coverings of CP! and have a global Z,, monodromy group. The differential forms can be iden-
tified with conformal fermionic ghosts, and the monodromy group has an induced action on
these fields, which thus fall into n irreducible representations. In the spirit of conformal field
theory (CFT), these representations are realized by locating the conformal fields isomorphic
to the respective highest weight vectors at the branch points. In mathematical terms, this
amounts to restricting the differential forms to a neighborhood of a branch point and to

considering representation theory thereon.

If the algebraic surface has branch points e;, i € {1,...,2N}, N =2, one may turn the surface
into a family of topologically equivalent surfaces by allowing 2N -3 branch points to vary over
cp! \U?ivl_e‘{ei}. This helps to extract further geometric information, such as degeneracies
when branch points are fusing, or periods, which satisfy differential equations with respect

to the floating parameters.

Although my investigations started with the work of Knizhnik, I will discuss this setting
in the second part of my thesis. There, I will consider the CFT realization of both, degen-
eracies and periods for the algebraic surface being a torus. The differential equation for its
periods is realized as the nullstate condition for the odd representation of the monodromy
group Zy. Therefore, the four-point function of the so-called twist field corresponding to
this representation is proportional to the periods of the torus. In particular, it contains
logarithms and the fusion of two branch points, which is simulated by the operator product
expansion (OPE) of two such fields, yields a doublet representation of the symmetries of the
conformal fermionic ghost system. The Hamiltonian is not diagonalizable on this doublet,
which signifies that the CFT has to be extended to a logarithmic conformal field theory
(LCFT). The minimalistic way to do this will lead to the triplet model, as explained by M.
Flohr in [F1098|.

This setting has been the starting point for my publication with M. Flohr [VF07]. As the
torus is the spectral curve of pure gauge, SU(2) Seiberg-Witten theory, we wanted to express
the prepotential in terms of characters of the triplet model. Although we only obtained the
prepotential in terms of the torus modulus, which equals the ratio of twist field four-point
functions, we have been able to determine the spectral curve by means of such characters.
This will be the subject of chapter 9 in part II.



The origin for my second main project, described in part I of this thesis, is the work
of E. Frenkel, A. Losev and N. Nekrasov [FLN06, FLNO8], who investigated Morse theory
and the topological A-model beyond their topological sectors. What is implied by those

considerations?

(Cohomological) topological field theories deal with global geometric objects on manifolds,
in particular with diffeomorphism invariants that are in the cohomology of some nilpotent
operator Q, called Becchi-Rouet-Stora-Tyutin (BRST) charge due to its properties. It has
an action on the fields and state spaces of the theory and the elements in its cohomology

classes comprise what is called the topological sector of a field theory.

Under certain circumstances a field theory has in addition to its topological sector further
“dynamical” states and observables. While the cohomology of Q is invariant under diffeo-
morphisms, this is not the case for the dynamical sector. Hence, the dynamical degrees
of freedom should in principle describe part of the local geometry of the target or domain

manifold.

In [FLNO06], Frenkel, Losev and Nekrasov consider the situation described above for Morse
theory with a first order Lagrangian on a Kihler manifold X with scaled metric g, A€ R>°.
The perturbative spectrum of this theory includes topological as well as dynamical states.
If X is supplemented with an additional structure, these states have their support on the
descending manifolds of the gradient vector field of the Morse function. Moreover, the

submanifolds yield a disjoint cover of X, and so do the perturbative state spaces.

The local geometry of X can be accessed employing the dynamical states. For A — oo,
the Hamiltonian becomes the Lie derivative in direction of the gradient vector field of the
Morse function. The perturbative state spaces which survive that limit turn into locally
defined induced representations of the symmetry generated by the gradient field. This is,
metaphorically, what an observer located on a descending manifold would expect to see.
However, Frenkel, Losev and Nekrasov claim that there are nonperturbative effects through
which the observer obtains additional insights into the local representations of the Hamil-
tonian on X . They propose that the nonperturbative state spaces are obtained by ex-
tending the perturbative state spaces as distributions to X and their analysis shows that
the thus globalized representations are the local cohomology groups in a complex called the
global Grothendieck-Cousin complex, [Kem78]. This complex has a cohomology operator,
the Grothendieck-Cousin operator (GCO), which compounds the local representation spaces
and appears as an additional term in the Hamiltonian. The observer is thus confronted
with a Hamiltonian which can not be diagonalized on all dynamical states — a situation well

known in the theory of logarithmic CFTs.

My initial interest in the work of Frenkel, Losev and Nekrasov [FLN06| arose from their
proposal that the topological A-model in the large volume limit is an LCFT beyond its
topological sector. In [FLN08], they reduce the A-model with embedding x: R! x S! — CP!



to the Morse theory of [FLN06] by integrating out the dependence on S'. In particular,
one can derive the perturbative state spaces and it appears that they can be modelled by
representation spaces of the conformal supersymmetric ghosts (CShc) with target space CP!.
It is now suggestive to assume that at least the representation theory of the A-model in the

large volume limit equals that of the CSbc and the theories can, accordingly, be substituted.

Furthermore, Frenkel, Losev and Nekrasov propose the deformation of the Hamiltonian,
but do not analyze the extension of the representation spaces in detail. Moreover, in order
to prove their conjecture that the A-model is an LCFT in the large volume limit and beyond
its topological sector, it is not sufficient to consider the underlying Morse theory. A loga-
rithmic deformation of the CSbc has to be found, which yields the correct extensions of the
perturbative representation spaces and adds the deformation terms to the Hamiltonian. It
is only then, that the Grothendieck-Cousin operators can be interpreted as the zero modes
of the logarithmic improvement terms which deform the energy momentum tensor. Parts of

those considerations have been addressed in my second publication with M. Flohr [VF09].

As mentioned above, this thesis has two parts, the first treats the logarithmic extension of
the CSbc underlying the A-model, the second is about fermionic ghosts on the torus and their
relation to Seiberg-Witten theory. Before I start with an outline, I will briefly comment on the
appendix, which serves to supplement the main part. In appendix A I summarize and specify
the basic ingredients of a topological field theory [BBRT91, Wit82, Wit88a, Wit88b|. In
appendix B.1 I briefly explain how the topological A-model is obtained by twisting an A =2
supersymmetric sigma model and note down the supersymmetry of this theory [Mar(05]. The
last appendix C is the foundation of another publication, wherein I study the possibility to
generalize the approach of Frenkel, Losev and Nekrasov [FLNO08|, by which they deform the

Hamiltonian of the A-model, to a deformation of the associated CSbc.

Partl In the following chapter 2, I will start with a discussion of Morse theory. Therein, the
geometric origin of the deformation operators is discussed and the conditions on the target
space manifold are fixed. This chapter follows the publication of Frenkel, Losev and Nekrasov
[FLNOG6], but some subtle points are treated in more detail. In particular this concerns the
extension of the perturbative representation spaces. I will propose an alternative ansatz for
the extension, which relies on a principle by which I can enlarge the representation spaces.

This ansatz is applicable in the context of the A-model.

In chapter 3, I will introduce the A-model with target space CP! and take the large volume
limit. Reducing the thus obtained theory to Morse theory, I will derive the perturbative state
spaces and explain why they can be modelled by the CSbc. Because the A-model is defined
on CP!, it is necessary to make chart transitions. For the CShc, these transitions are defined
through the chiral de Rham complex, which I will also introduce. My method to derive

the deformation of the Hamiltonian differs again from that of Frenkel, Losev and Nekrasov



[FLNO8|. It relies crucially on bosonization, which I will discuss in detail. It will be important
that the holomorphic and anti-holomorphic “halves” of the CSbc are considered together, not
only because of anomalies occurring but also because the GCOs are composed of both parts.
Indeed, I will explain that this composition constrains the representation spaces and the

symmetries of the theory.

Having determined the perturbative representation spaces, their extensions, and the Gro-
thendieck-Cousin operators that mediate between them, I will then move back from Morse
theory to the conformal field theory. In chapter 4, I will use the method of Fjelstad et
al. [FFH*02] to deform the CSbc logarithmically. I will do that in such a way that the
representation spaces are extended consistently and that the GCOs are added to the Hamil-
tonian. This has an effect on the operator product algebra of the fields, but neither on the

supersymmetry nor the conformal symmetry of the CSbc.

I will conclude this part of the thesis with a brief summary and discussion in chapter 5.

Part Il In part two I will concentrate on the fermionic conformal ghosts on branched cover-
ings of CP! [Kni87]. After a brief motivation in chapter 6, I will specify the algebraic surfaces
under consideration and introduce the conformal ghosts in chapter 7. Since they will have
nontrivial operator product expansions in a neighborhood of a branch point it is necessary

to extend the representation spaces by the representations of the monodromy group.

In the the subsequent chapter 8, I will derive by geometric arguments that the fermionic
ghosts on the torus necessarily comprise a logarithmic conformal field theory. The minimal

version is the triplet model [F1o98|, which I will introduce in chapter 8.3.

In the last chapter 9, T will explain how the spectral torus of pure gauge Seiberg-Witten
theory can be obtained from certain characters of the triplet model and note down an

expression of the prepotential which is given completely in terms of quantities of this LCFT.

The thesis will be concluded with a summary and a discussion of open questions in the

last chapter 10.
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Morse Theory 2

This chapter has three parts. My starting point will be Morse theory on a general Riemannian

surface X with scaled metric Ag and symplectic form w.

Firstly, I will prepare the topological sector of this theory by breaking CPT invariance and
by making localization on the instantons explicit. This amounts to consecutively putting
constraints on X. The constraints will be such that the instanton sectors are well defined and
that the gradient field corresponding to the Morse function decomposes X into submanifolds,
to each of which one can perturbatively associate a state space. Among those, there are

excited states which are not scaled out in the large volume limit A — oo.

Frenkel et al. proposed [FLNO6| that the state spaces in the limit A — oo, when generalized
as distributions on X, comprise the nonperturbative low energy spectrum. In sections 2.4
and 2.5 T will discuss some consequences of this assumption for Morse theory on CP!, mainly
following their publication but also with an additional discussion of the cohomology of the
supercharge, as well as a different method for extending the state spaces as distributions. The
most important observation will be that observables which include exterior derivatives are
no longer diagonalizable on all states. In particular, this concerns the Hamiltonian and thus
draws a similarity to logarithmic conformal field theories. Rather, those operators intermix

the state spaces which formerly have been located in different charts.

Finally, I will discuss the physical and geometrical meaning of this sort of non-locality,

which is due to the non-topological states.

This chapter will be concluded with a generalization of the toy model to a class of manifolds
X and will be the basis for an understanding and analysis of the Morse theory underlying
the topological A-model. My explanations rely mostly on [FLN06, BBRT91, Wit82].

2.1 The Path Integral Point of View

In terms of the structures just introduced, the Morse theory I will consider consists of a
Riemannian surface X, a smooth embedding x:X € R — X, its Grassmann valued super-
partner ¥ and another Grassmann valued quantity m, which is the conjugate momentum of
w. The Euclidean metric g on X is scaled by some parameter A € R>? and, without loss of
generality, I fix a connection D to be the Levi-Civita connection, defined with positive sign

o . p 0 _0ph
on gar: Dvga = 5l



Let f: X — R be Morse, i.e. single valued and with isolated critical points x.:d f(x;) =0
and denote further by D,y* = dw +FZU d(i‘t w7 the pullback of D to £ and by V¥ f:= gt d, f

the gradient of f. In local coordlnates, the action I am interested in is

dx* dx”
Sy = A )L Hva, fo
A fz( 8w ar ar 278 uf0vf

(2.1.1)

+ i,V — i, (Do VA F) w® + ﬁRZﬁ mumy yP)de

In the following sections I will extract its topological sector, selecting either the instantons

or anti-instantons and by specifying several conditions on X.

Since df(x;) =0, the Hessian H(x)[y] := Dy(df)(x), y € Ty X does not depend on the choice
of the connection at a critical point x.. In local coordinates it reads Hjy(xc) = 0,0y f(xc).
There exists a basis e, of tangent vectors at Ty X in which it is diagonal with eigenvalues
Koy : H(Xo) ey=xcy ey The condition that the critical points are isolated is equivalent to
the condition that H(x;) has no zero eigenvalues. Since the Hessian does not depend on the

connection, it is reasonable to define an index for every critical point
ind(x;) =#{u: Kep <0}, 2.1.2)

which is a topological invariant.

In order to see what the classical solutions are, I will for a moment concentrate on the

bosonic part. One can apply the so-called “Bogomlny trick” to find the absolute minima of

u 2
Sbos = f(l(d;t v“f) +A¥)dt (2.1.3)

the action:

Since it was positive semi-definite before, I obtain a lower bound

Sbos = f dfi, (2.1.4)
b2
which is satisfied by the gradient trajectories
dx*
+ V# 0. 2.1.5
a * f= ( )

These are the classical bosonic solutions to §S =0. There are three kinds, depending on the

boundary conditions. The vacuum configurations are solutions of

dxH
% =0 A vuf(x) =0, (2.1.6)

which is satisfied by constant loops, i.e. the critical points x.. If there exists more than one

critical point, say {x,x_}, there are also instanton (—=Vf ) and anti-instanton configurations

(+Vf):
dxH
E + V“f(x) ,  X(Foo) = x4 2.1.7)

where w.l.o.g. I fixed some initial and final time. From (2.1.4) one can conclude that the

instantons satisfy f(x;)> f(x-) and the anti-instantons f(xy) < f(x-).



2.1.1 Making CPT Breaking and Localization Manifest

The anti-instantons can be excluded from the classical minima by subtracting A [df from
the action (2.1.1). This term does not depend on the metric and is hence topological. Tt,

however, breaks CPT invariance as one would expect for a theory without anti-instantons.’

In order to make the localization property manifest, I massage the action S—A [df into a
first order form, by introducing a Lagrangian multiplier p,. Viewed as part of the integration

kernel exp{—S} in the path integral, I may now consider, equivalently to (2.1.1):
. (dxt 1
Sy =fz( —ipy (E —g‘wavf) + ﬁgmpupv

1
+im, (Deyt — D VF Hy®) + ﬁRZ/Vs nunvw“u/ﬁ)dt.

In the limit A — oo, the integral kernel turns into a § distribution on instanton moduli space,

(2.1.8)

which makes localization explicit. Indeed, for finite A, the instantons still contribute with
a weight factor e 2Af@)=f@l o correlation functions, but for A — oo their contribution
disappears. On the contrary, the instantons contribute with a constant weight factor 1 for

any value of A.
Let v#(x) := V¥ f(x) be the vector field associated with f and P;; = pu+l"ﬁv1//"n1. The
action in the large volume limit can now be written as:

dx* dy*
= —j M= M| — - % u
Seo 1L(pu( " v ) n“( ; OqV ))dt. (2.1.9)

It is invariant under the following susy transformations

, Q% yH]=0vH

(2.1.10)
, Q% pul=0

=0
=0

[Q xF1=vyH, [QuHl=0 [Q*, xH]
[Q!nu] = p;u [Q! p;l] =0 [Q*yﬂ:p]

and moreover, the Lagrangian is Q-exact, L = —i[Q,m, (dd—x: - v“)] and thus is the Hamiltonian.

This is roughly the model I am going to consider. However, I will need some more infor-
mations on the instanton moduli space, especially in order to find constraints on the target
manifold. There will be serveral obstacles which have to be resolved and I will list them up,
whenever I encounter one. In the following and for convenience, I will leave away the prime

for py,.

2.1.2 The Instanton Moduli Space

The instanton equation % = vH(x) gives rise to a symplectormorphism of X, i.e. L,w =0:

bu: XxZT =X  x—pyx, 1) =x(1), 2.1.11)

IThough for the model under consideration CPT is really CT, I will follow the terminology of Frenkel, Losev and

Nekrasov [FLN06]. For a more detailed discussion of CPT breaking, c.f. section 2.2.4.



where x(f) is an instanton solution and ¢,(:,t) determines a one parameter group in ¢. By
means of this flow equation of v one can try to find a partition of X into submanifolds
which is generated by the fixed points of v. These will be the descending X, and ascending

manifolds X¢ :

x© ::{xeX: im gb,,(x,t)zxc}. (2.1.12)

t— =00

If x; is a nondegenerate critical point and ¢, a diffeormorphism, they are indeed submanifolds
[AR67, pg. 87f] and inherit the tangent spaces defined by the flow lines.

For the following reason I demand that a decomposition of X into descending and ascending
manifolds exists. In section 2.2.4 I will explain that the state spaces will be localized around
the fixed points of v. A decomposition of X in terms of, say, descending manifolds is useful
because one can then canonically associate to each such submanifold a state space &, and

these cover X. Therefore:

O The target manifold X has a (Bialynicki-Birula) decomposition
X = Ugews Xa = Uges X* with respect to v.

The instanton moduli spaces are defined by means of descending and ascending manifolds
M, f) =X uXP, (2.1.13)

and under further conditions it is possible to calculate the dimension of this moduli space.
Let x. be a critical point, I can choose local coordinates such that it is located at the origin.
In its neighborhood I can approximate a solution of the instanton equation by a line ele-
ment y = x.+ x and by making a Taylor expansion around the critical point. This yields to
lowest order d;x* — HY(0)x” =0, whith Hessian H evaluated at x, =0. Thus, locally around
the fixed point, the directions along which H has positive eigenvalues span the tangent
space of the descending manifold while the others span the tangent space of the ascending
manifold. Therefore, at least in a neighborhood of a fixed point x., T X, =~ RIMX-ind(xc) .
=~ ¢dimeX—3ind(x0) while for the ascending manifold TX¢ =~ RM&) op ~ C2nd(d) | The general-

ization of this condition is as follows:

O Let (f,X,1g) allow for Morse-Smale transversality, i.e.
V xeda,p), ¥ ap : dim TyX,+dim T, XP —dim X =dim (T,X, U T, XP).

One can now calculate
dimg #(a, ) =ind(B) —ind(a). (2.1.14)

The Morse-Smale condition yiels a nice description of the tangent spaces of X in terms of
instanton flow lines. Especially the dimensions of the instanton moduli spaces are natural
numbers including zero, restricted by the dimension of the target manifold, and there are no
dimensional degeneracies. Since it is expressed by the Morse indeces, the dimension of the

instanton moduli space is a topological invariant. Morse-Smale transversality does further
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restrict the flow lines to move from fixed points with lower to fixed points with higher Morse

index.

There is another, physically inspired way to calculate the dimension of the instanton mod-
uli space [H*03, sec. 10.5.2]. Consider an instanton solution x: d;x* — v#(x) =0, x*(-o0) =
xh, xH(c0) = xg . Again, T will move in the solution space of this differential operator to
another solution y = x+nz, where >0 is an infinitesimally small number. The curve y is
an instanton solution if the displacement z satisfies D_z:=(d;— H(x(t)) )2=0, z(+00) =0
to the order 7. For every ¢ I may choose a basis of eigenvectors of H(x(t)) with eigenvalues
x,(f) which spans the tangent space Ty X. The operator D_ is diagonal in this basis and

has homogeneous solutions
t
zu(t):e,,exp(f Ky (7)dT1), (2.1.15)
0

where e, diagonalizes D_ at r=0. These solutions have the correct boundary conditions if

Ku(=00) >0 and Ky (00) <O0.

There are two possible scenarios. The first is that the dimension of the solution space
equals the dimension of the eigenspace of the Hessian. This is the case if none of the
eigenvalues x,(#) changes its sign from a negative to a positive value when passing from
t=—ooto t=co. Ifthisis satisfied, dimg .4 (a, B) = ind(B)—ind(a) = #{u : Ky (—=00) >0, x(00) <
0} =dimkerD_. In the second scenario there exist eigenvalues which change their signs from
negative to positve value. They belong to homogeneous solutions of the differential operator

Dy :=d;+ H(x(#)). In that general case, the difference ind(f)—ind(a) can be written as

dimg .4 (a, B) = dimkerD_ —dimkerD. . (2.1.16)

The operators Dz appear in the equations of motion for the fermions w* and m, re-
spectively. Under the assumption that the dimension of the instanton moduli space equals
dimkerD

1...d, d =dim.#(a, B), whereas Ty has no “zero modes”. This leads to the selection rule that

—, it further equals the number of linear independent solutions of D_y,; =0, [ =
observables have to contain a product H;’lzl Wo,1, if the correlation function is not to be zero.
The reason is that the path integral is a § distribution on the homogeneous solutions of D_

and the instanton configurations xg

(@):f Y0,1 0\ 4t (a,p) - 2.1.17)
uﬂ(a,ﬁ)I:l:[..d ° @h

An integral over Grassmann variables is zero if the integrand is not a volume form, and in the
next section I will make clear that, indeed, the zero modes of ¥ have a geometric meaning as
differentials on X. From the discussion above I conclude that they are physically signifying
the presence of instantons, and the number of fermionic insertions counts the dimension of

their moduli space.?

2In the fermionic bc-system, that I will discuss in the next chapter, it will also be necessary to insert "zero-modes" in

11



2.2 The Canonical Point of View

The Morse action (2.1.9) has an immediate interpretation in terms of geometric quantities
of the target manifold X. The best place to understand this is the canonical formulation of
the theory. Reshuffeling the terms in (2.1.9), I can read off the classical Hamiltonian in the
large volume limit?

Hoo = v (ip) + %0, vF(imy). (2.2.1)

Reconsidering (2.1.10), an immediate choice how to quantize consists in relating the “field”-

coordinates with geometric quantities in the following way:

bosons: fermions:
xt x|yt dx* 2.2.2)
ipu Op | imy b

The Hamiltonian above and the supercharges Q and Q* can now be rewritten as
Q=d, Q"=u, Hx=%,={QQ", 2.2.3)

and they have a canonical action on differential forms on X. The geometric data satisfy
the usual quantization rules [py,x"] = —ic‘il‘;, ('] = —ic‘il‘; for the superbracket, and in
particular

Q=iy*p,. (2.2.4)

In the following I will reproduce the deformations described for the path integral ansatz for
the canonical formalism of Morse theory. The idea behind this is to see what the spectrum
of the Hamiltonian in the large volume limit looks like and to investigate if there remain well
defined exited states in this limit. I will again start with the action (2.1.1) before taking
the large volume limit and the target manifold (X,1g), endowed with an inner product on

differential forms 1, y € Q*(X)
nx = fX (x MDAY. (2.2.5)

The bar denotes complex conjugation, if necessary, and * the Hodge operator.* The Hamil-

tonian corresponding to the action (2.1.1) with Morse function f is obtained from the

correlation functions. These do, however, not represent instantons because they are mappings between isomor-
phic representation spaces, cf. section 3.4.1 and section 8.3. On the contrary, instantons relate different vacuum
configurations (they are highest weight vectors of different representations).

3This classical Hamiltonian is not bounded from below. However, in section 2.4, 1 will derive it from the canonically
quantized Hamiltonian with A # 0 by deforming the spectrum in a specific way, cf. [FLN06]. Thereby one obtains
states which are not in the closure of Q('i(X) with respect to the 12 norm, but on which one can define an orthog-
onal pairing and whose eigenvalues with respect to the canonically quantized H, are positive semidefinit (when
considered perturbatively, c.f. section 2.5). Analogous will be satisfied for the A-model.

Vgl meepe

4 1AL dte = VIS
On volume elements x dx*! A ---dxHk = @maX =T Vi1 Vaim x

V1 . Vi — -
dxV1 A dx and EUIWUdi RX = +1 for even per
mutations.
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supercharges

Q=dy=eMdeM =d+ A dfa,
1 (2.2.6)
Q' = d; =eMdte™ = EdT +ivy,
as
1 1, _

H:Alzg{Q,Q*}zg(A IA+AIASI? +Kp), 2.2.7)
where, ||df||2 = vadf, Ky = $vf+££$f, ffgf = {dT,df} and A = {d,d'}. Conjugation t is
defined with respect to the inner product. Let me emphasize, that up to now CPT is not
broken and the two supercharges are indeed conjugate. However, in the large volume limit
CPT will be violated and this makes the difference between the dagger and the star, for

instance for the supercharge in (2.2.3).

2.2.1 On the Cohomology

As T explained in the introduction and in appendix A, the topological states are in the
cohomology of the supercharge Q. Under certain conditions on X, that I will concentrate on

in this section, the cohomology of Q is isomorphic to the kernel of the Hamiltonian.

The supercharges above are obtained by a similarity transformation of d and df, and I
can hence carry over the results on the de Rham differential to the more general situation in
Morse theory, in particular that H(‘h (X) = H(‘l(X). If X is a real manifold which is moreover

compact, oriented and without boundary, there exists a unique Hodge decomposition
Qf =0 'edofen) X)), (2.2.8)

where le (X) denotes the harmonic forms on X with respect to H=A, [Nak03]. If such a
decomposition exists and moreover an inner product like (2.2.5) one can show that H(’i/1 (X) =
Qi (X).> Thus, in order to identify the cohomology of the supercharge with the ground
states of the Hamiltonian it would be sensible to invoke that whenever X is real, it should

also be compact, oriented and without boundary.

If X is a compact Ké&hler manifold there exist unique, orthogonal Hodge decompositions
for the Dolbeault derivatives 8, and 8,. Notice that in this case djy =9, +0, and similar for
the conjugate. Since Aq, =245, = 275, [Nak03], one finds that HgA’q(X) = QZ’:’ (X) and the

A

same is true for the conjugate differential forms. Therefore:

O Let X be a compact Kéhler manifold or, if real, compact, oriented and without bound-

ary.

Sletwe Q.Aa (X), then (w,Ayw) =0= ||d,1a)||2 + ||d;a)||2 and this proves that a harmonic form is closed under dj and

d}l. The Hodge decomposition is orthogonal and therefore the harmonic forms are not exact with respect to d.
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The next section will clarify that the isomorphy between the cohomology of the supercharge
and the kernel of the Hamiltionian will survive CPT breaking if A <oco. For A — oo this will
still be true at least for X = CP! and I will prove this in section 2.4.1.

2.2.2 Implementing CPT Breaking and Localization

The transformations I have done on the path integral in section 2.1.1 can be translated to
the canonical point of view by considering correlation functions of topological observables

and states

(@, et=tHg =t pti=t)Heg o=t)H yy

(2.2.9)
f [* @(x)] A x(x-) Onltn) A+ NOY(1)e°.

XxX S-X: x(t)=x_, x(ty)=x4

Since the topological sector is supposed to be invariant under subtracting the exact term
f;_* df = f(x:)— f(x)+ f(x) — f(x_) from the action, this must have an effect on the operators
and states. Expectation values of topological observables, calculated with an Hamiltonian
in which CPT is manifestly broken by the additional term, must equal the undeformed
expectation values. Therefore, the states and observables in the CPT-broken phase are

subject to the following transformations of the physical counterparts®

x = ety Q —d
*® — e Mx @ andin particular Qf — Q=2 +A71d" (2.2.10)
6 — eMoe M H — Hy=%,+5A

Let me emphasize that all operators transform in the same way and the mappings above
are not similarity transformations. Therefore, the new Hamiltonian is not self-conjugate any

more and I rather put a * than a t.

One may now allow the transformed Hamiltonian not only to act on topological but also
on dynamical states. Still, for finite values of A, the new Hamiltonian has the same spectrum
as H because the in-states have just gained a phase. In particular, the isomorphy between
the supercharge cohomology and the ground states is still valid, though the theory is not
unitary any more and the in- and out-states are no longer connected by an inner product
(T will discuss the out states in section 2.2.4). The Morse theory with broken CPT and
the one determined by (2.2.7) have the same cohomologies with respect to the supercharge,
since H(’i/1 =~ Hj. Moreover, for finite A, Hj = Q‘AA =~ Q}h’ such that dimQ‘AA =dim Hy. These
dimensions are a topological invariants and thus should not be affected by taking A — oo.

6The exponent e/ := M/ =) for the “ket” and e~ A = "MW =f ) for the “bra”.
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2.2.3 The Instanton Moduli Space Revisited

According to the considerations of the last sections, the topological states are elements of
the de Rham cohomology of d. In the following I will consider observables @ which can
be identified with differential forms w on X, substituting @* with dx*. Integrating out the
conjugate momenta, the quantum mechanical Greens function between two critical points
Xy is

d
G* ) @y ...a :f d t(é“——a “) . L I5). 2211
i) [O1... 0] M(_'Hsgn et|Oa g, —0av k:/l\mn(p L @k, ) ( )

By ¢+ , (g, tr) I denote the push forward of the diffeomorphism (2.1.11), evaluating w along

the flow lines, and I assume that these operators are time ordered.

The Partition Function One of the most famous of such Greens functions is the (super-

symmetric) partition function

Z(T) =f 8y —x_)6 (s —w_)GE;C*'lf*; (1]= ) sgn det(-H? (x.)) . (2.2.12)
X o cedd

The set o/ encompasses the critical points, T = f, — f_ is the time period and the periodic
boundary conditions cause localization on the flow lines that are loops, i.e. the vacuum
configurations. The operator % does not contribute to the sign of the determinant because
of these boundary conditions.” The supersymmetric partition function can also be written

in terms of the Hamiltonian, using (2.2.9):
Z(D) =str e =tr (—)FeT, (2.2.13)

where (-)F gives a minus sign on fermions (forms with odd degree) and plus on bosons
(even degree). Since the excited eigenstates of H are always boson-fermion pairs due to
supersymmetry, the partition function counts the difference in the number of fermionic and
bosonic ground states Z(T) = trQ-AA (=)F. Thus, if X is such that the harmonic differential

forms are isomorphic to the de Rham cohomology,
Z(T) =) (-)"dimg Hj (X,R). (2.2.19)
n

A careful reader might have objections against this derivation, because it is not obvious how
to interpret the trace if CPT is broken. However, for finite values of A, the in- and out-states
are isomorphic and the spectrum of the Hamiltonian is basically the same, such that the

equation above remains correct.

7This is nicely explained in [BBRT91]. Due to periodic boundary conditions one can make an expansion in Fourier

modes xH (1) =Y ez xﬁei’” and the same holds for the other coordinates. For simplicity let X be one dimensional.
The Hessian is diagonal in the tangent basis of flow lines at x, with eigenvalues A.. Hence, in that basis and at x.,
the sign of the determinant is: sgn det ([T,,ez (~in + Ac)). Only the zero mode contributes with a sign for the others

square to a positive number.
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Correlation Functions with Observables To be topological, more general correlation
functions including observables have to be zero on Qj-exact observables. Notice, that Q) =d

and using Stokes formula this implies the condition

f de. , 1) =0. (2.2.15)
M(—,+)

This can be obtained by demanding that the boundary 6.4 (—,+) vanishes. In the following
I will, however, fix another property of X such that the integral yields zero.

In order to yield non-trivial correlation functions, the observables must have a total form
degree of dim .#(—,+). In particular, if the dimension of 0.4 (—,+) in the equation above
was less than the form degree of ¢. ,(w, ), the correlation function would also vanish, and

this is what I am going to enforce in the following.

First, I have to ensure that 0.4 (—,+) is a submanifold such that an integration of differ-
ential forms on this space is defined. In order to investigate 0.4 (-, +), I take the closure of
the descending and ascending manifolds X_ and X*. Since X is compact these closures are

compact. If the following condition holds

0 The X, and X% are stratifications of X, i.e. X4 = Upear, Xp Where o4 is the set of
critical points with index greater or equal ind x, and similar X" = Uﬁeﬁsaxﬁ where

now <, counts lower indices

there is a canonical compactification of the instanton moduli spaces

M (=, +) = (Ugewr. Xo) [ (Upear, XP) (2.2.16)

and thus their boundaries will be manifolds [Hut02].

If X is Ké&hler, the analysis is immediate. All indices are even valued, as one has a
holomorphic and antiholomorphic part. The supercharge is Qy = d+0 and raises the total
form degree by one. Hence, under the correlation function and after invoking Stokes formula,
the differential form has degree (dim .4 (-, +)—1). Because the compactified instanton moduli

space can be rewritten as

() = U M) <l (= B x M@, B)) x (B}, +), (2.2.17)
lX,‘E.Q{>_ N ﬁjE.Q{<+

the boundary must also have even dimension, as it consists of instanton moduli spaces being
glued together. Therefore, the correlation of an exact differential form must be zero in this

case.

If X is a real manifold, the situation is more complicated and I know of no general argu-

ment. Due to that lack of knowledge I will restrict to

[0 The manifold X be Kahler.
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2.2.4 The Out-States

The in- and out-states are related by a CPT transformation: F,

= CPT-gifl, where +

denotes particles and — anti-particles. Formally, an in-state can be written as

Win = f [Tow) e™5t, (2.2.18)
x(8): (=00,0], x(—o0)=x_, x(0)=x

where the boundary condition x_ defines a vacuum configuration, and CPT acts by conju-
gation w — * @ and time reversal. Thus, if the theory were unitary the out states would
be of the form woyt = *®in. Under that circumstances, there exists an hermitian inner pro-
duct and the out-states can be identified with the in-states. However, in the case under
consideration and due to the additional term, CPT acts non-trivially on the Lagrangian
Ly(t) =L - A d, f(x(2)), (2.1.8),

Ly(ty— Ly(—=)+2A %f(x(—t)), (2.2.19)

and the extra term indicates that the theory is not unitary.?

When decomposing the thus transformed Lagrangian in analogy with section 2.2.2; the

out-states obtain a phase factor e™24 and thus
Wout = e_ZAf * Qip . (2.2.20)

For finite values of A, the out-states are still isomorphic to the in-states, but in the limit

A — oo, this is not canonically valid.

The In-States in the Vicinity of a Critical Point

In section 2.1.2 T wrote that the states are localized around the critical points of f. This is
definitely the case for the topological states. To see this I consider (2.2.7) and undertake the

semiclassical analysis in analogy to Witten [Wit82].
Taking into account that the conjugate derivative in real coordinates and for an even

dimensional manifold X is df = -1, V¥, the operator Ky can be written in a simpler way:

H=2 (A A+ A1dfI2 + Hy (0 [dot ). (2.2.21)

N | =

If 2 — oo, the potential energy will grow, and this enforces the low energy states to localize

around the critical points. In this case it is customary to undertake a Taylor expansion

8However, notice that for a vacuum configuration the extra term yields zero and CPT invariance is not affected.
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around a critical point in order to study the low energy spectrum.? Thus, I choose local co-
ordinates x (Riemann normal coordinates respectively Kéhler normal coordinates [HIN02]),
in which the critical point x. is at the origin x. =0, the metric is approximately FEuclidean,
ie. guy = 5uv and 0 g,v(0) =0, and the Hessian is diagonal, Hf(O) = 65 ky. The Hamiltonian

can now be approximated as

o ggpert ( ( )2 + )L(ny“)z +Ky [dx“,t,,]) +0(x%)

=)
H 2.2.22)
>
u

I

(A7 HE —xu(5)).

The operator Fy, equals one if the differential form contains dx* and zero, else. The bosonic
part is just a sum over independent harmonic oscillators, and since [ bos’(_)F #] =0 these

operators can be diagonalized simultaneously. From the eigenvalues

E=) (xul@ny+1)-xu(=)*), nueNui{o} (2.2.23)
u

one can conclude that the vacuum configurations are unique and the form degree must equal

the index of x.. Namely, x, #0 since f is Morse, and n, =0 for vacuum configurations.

Let me conclude with some remarks. Firstly, for the class of target manifolds under
consideration, the perturbative ground states equal the actual ground states. The reason is
as follows: In general, the perturbative ground states might get lifted to massive states due
to nonperturbative effects. However, there is a pairing of massive fermions and bosons due to
supersymmetry. On a Kéhler manifold, all ground states have an even form degree and a lift
to an excited state would yield bosons, only. This does not conform with supersymmetry,
such that on a Kéahler manifold the number of critical points must equal the number of
ground states. This does not mean that nonperturbative effects can not be observed on

excited states.

Further, T would like to emphasize that due to the scaling of the metric with A, there
remain finite energy contributions in the large volume limit. These excited states do also
localize on the ascending and descending manifolds. Namely, the in-states take the form

(2.2.18), and when A — oo they localize on the gradient trajectories. Since x(—oo) must be a

9Notice, however, that such an expansion destroys the kinematics of the theory. Further, it demands that a partic-
ular vacuum configuration is selected around which the Hamiltonian is expanded. This might promote the idea
that it would be necessary to distinguish a “physical” from “other” vacua, while further it destroys the topological
properties of the theory such as instantons. Behind these drawbacks, Taylor approximating around a fixed back-
ground has, is hidden the idea that for a theory on curved target spaces there should be distinguished a “free”
from an “interacting” part in the Hamiltonian respectively the Lagrangian, just as is common in quantum theories
on flat spaces. The careful reader will find that the approach of Frenkel, Losev and Nekrasov [FLNO06], though it
heavily relies on a proposal on the nonperturbative states and makes use of the Taylor ansatz in order to obtain
the perturbative states, tries to overcome this rationality, cf. section 2.4. At least the nontrivial topolology will be

preserved.
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critical point x., these states have their support on the descending manifolds X,. Therefore,
the in-states are associated to the descending manifolds that cover X. By the same argument

the excited out-states are supported on the ascending manifolds.

The ground states, extended by those excited states, will be focused on in the following.

Before, I will briefly summarize the constraints on X that I have obtained.

2.3 Summary of the Constraints on X

In the last two sections, I have transformed a general Morse theory in such a way that the
main ingredients which make a topological theory integrable are manifest: breaking of CPT
invariance and localization. I have discussed the relation between the canonical and path
integral point of view. I had to put several constraints on the target manifold X in order to

achieve that there exists a topological sector. Now I would like to add a last constraint.

I always assumed that f is Morse and derived a vector field v =V f as a gradient of this
function. In the situation of the A-model it will be important to reverse the logic and start
from a given vector field v. For the transformations (2.2.10), the existence of such a potential
is essential. It is in general not guaranteed that v can be expressed in terms of a gradient of a
unique potential f. However, if X is a compact, simply connected, symplectic manifold and
v is a symplectomorphism, one can invoke de Rham duality H 1(X) =~ H;(X) =0 and conclude
that w:=1,g is an exact one-form w =df. Consequently, for every vector field v there exists

a unique and single-valued function f such that v=Vf.
O Let X be compact and simply connected.

I have been as unrestrictive as possible and at the end of my discussions it appears that
I had to put the same constraints as those used by Frenkel, Losev and Nekrasov [FLN06].

Here is the summary of the conditions:
O The target manifold X is a compact, simply connected, oriented K&hler manifold with
Euclidean metric Ag.

O There is a Morse function f: M — R such that M has a Bialynicki-Birula decomposition

by means of the descending and ascending manifolds.
O The descending and ascending manifolds are Morse-Smale transversal.
0 The descending and ascending manifolds are stratifications of X.
The main side-effect of the transformations is that the theory is no longer unitary and
therefore the out- and in-states are not related by an inner product. The in-states are

supported on the descending manifolds X, and for the vacuum states I used the argument

of [Wit82] in order to see that their form degree equals the index of the fixed point x.

19



2.4 Morse Theory on X = CP!

In this section I am going to review the toy model considered in [FLN06]. Many features of
the Morse theory underlying the topological A-model can already be studied by this example.
The most important aspect will be that the Hamiltonian is not diagonalizable due to the

excited states.

The toy model is defined on X = CP! with inhomogeneous coordinates z,z, endowed with

the Fubini-Study metric Ag= A1 (fff;%z and a Morse function f = i Ii:z: I do further assume

that the topology of CP! is the Zariski topology. The vector field associated with the Morse

function is a generator of the C* symmetry of X, v=zd,+ z0;.'% It has fixed points {0,00}

and the corresponding descending manifolds are obtained from the flow equation % =

([z()], { = z0,. The point {0} is repulsive with ind(0) =0 and has an associated descending

manifold Xy = Cy, where Cy = CP"\{oo}. The other fixed point {oo} is attractive with ind(co) = 2

and descending manifold Cy, = {oo}. The Hamiltonian before the transformations reads
Azl 1-|z)?

2
H=--(1 226,05 + = F,+F;—1). 2.4.1

The rationale behind the work of Frenkel, Losev and Nekrasov [FLNO06] is now as follows.
It is not possible to derive the spectrum of the Hamiltonian H. Therefore, one may use the
trick to break CPT invariance (H— Hj) and move to the large volume limit A — co. The
Hamiltonian will then be the Lie derivative in direction of the vector field v, cf. (2.2.10). The
advantage is that this is a linear operator which is better tractable. However, if this operator
is considered in its own right and independent from the physical Hamiltonian, it is not clear
what the spectrum looks like. Firstly, since Hy, =%, is not bounded from below, one might
get states with negative energy Eigenvalues. Secondly, it is an operator on differential forms
on CP! but it is not obvious what kind of differential forms should be allowed. If one allowed
only smooth differential forms, due to the shape of the vector field v this would restrict the
Eigenvectors of &£, to the space of constant differential forms and these have Eigenvalue zero.
They would only cover the topological sector but not the dynamical. In order to overcome
these difficulties, Frenkel et al. go back to the physical Hamiltonian H and consider its
approximation as an harmonic oscillator (2.2.22) in the charts around the critical points of
v. It turns out that the thus obtained eigenstates survive the large volume limit and become
eigenstates of %, with support on the descending manifolds. This is, however, only the
perturbative spectrum and Frenkel et al. have to invoke a hypothesis on how to obtain the

nonperturbative states, which I will explain at the end of this section.'!

10The Lie algebra of C* is generated by v = 20, + 20; and u = i(zd, — Z0;). The group elements are e?V and e®* with
PpeR.

11n their publication, Frenkel et al. [FLNO6, pg. 7] claim that their approach should be viewed as an alternative to the
usual Gaussian perturbation theory. Their method, they say, captures the nontrivial topology (and perhaps even
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Below, I will derive the low energy states locally around the critical points in the charts Cq
and Cy :=CP'\{0}. In the large volume limit, their supports turn out to be the descending
manifolds. As already discussed in section 2.2.4, the perturbatively obtained ground states

are the exact ground states for the global theory.

In order to treat the situation in the charts around {0} and {oo} at the same time, I introduce
a constant k € {+1} that distinguishes if the the fixed point is attractive or repulsive. The
respective Morse potential and its gradient are v = k(z0, + 20z), f = %klzl2 for both charts,
where k = +1 simulates the fixed point {0} and k= —1 the fixed point {oo}. Notice that I
neglected the constant in the Taylor expansion of f because it is irrelevant for the analysis
of the spectrum of the Hamiltonian, the Morse potential does only enter the Hamiltonian in
terms of Vf. The coordinate z is already a K&hler normal coordinate in a neighborhood of

z=0, g(z) =1+ 0(|z?), and the Hamiltonian is perturbatively given by (2.2.22)
(pert) 2 A 2,12
H'P :_1620”5 k°\zI°+ k(F,+ F;—1). (2.4.2)

The eigenfunctions are the Laguerre Polynomials

1 i i
Wom = (n(/lk)('”m_n n'ml) ? e%ﬂ"“'"az’"ag e MkIZZq P A q29, (2.4.3)

with Eigenvalues Ej pmpg=n+m+1+k(p+q—1) and n,meNuU{0}, p,q€{0,1}.

When T apply the transformations (2.2.10) and (2.2.20), the sign of k matters. In analogy
with [FLNO06] I start with k=1, i.e. {0} is repulsive. The in- and out-states of the transformed

theory are now

. 1 5 z
(in,A) _ -AzZ AmAn —AzZ
Vo m ~Antm € 9,0z e ’ (2.4.4)
N . 4.
utd) _ =  gngm o=AzZ 4, A dz
n,m 27 nlm! *F 2

Whith the normalization above, the limit A — oo makes sense and the resulting states will

have the same Eigenvalues as the original ones.

If k=-1 and {0} is attractive, the réle of the in- and out-states are exchanged and hence,
the in-state for an attractive fixed point is just the out-state above. Taking the large volume
limit, the in-states become polynomials in z and z. The out-states are functionals on the in-

states, and a partial integration makes transparent that the exponential is a representation

the geometry) of the configuration space. Using the harmonic oscillator approximation, they, however, do rely on
the Gaussian approximation and on an hypothesis about the nonperturbative state spaces. Although this is a slight
drawback, I still find their attempt and results of great importance, in particular concerning the question of how to
quantize quantum field theories on curved manifolds without destroying their kinematics and/or their topological
properties such as instantons or symmetries between different vacuum configurations. By the Gaussian approxi-
mation, an interacting part is distinguished from a free part (leading to a linear equation of motion) of the theory. I
consider it a necessary question to ask, if it makes sense at all, to make such a distinction in a quantum field theory

on curved manifolds.
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of the Dirac distribution. Therefore, when 1 — oo,

A )

\P(rglm) - anm y

(out,A) 1 nam «(2) i B (2.4.5)
Yom™ — mazaz 69(z,2) EdZ/\dz.

The perturbative situation on X = CP! is now as follows: On the descending manifold C,

the in-states are given by
T =Fo0Fy, Fo=CllzlleAlldzll-1llg,, Ao=1lg, (2.4.6)

and Ag is the vacuum configuration. The expression C[[-]] denotes a power series and A
the exterior product. The operators 0, and i, annihilate the vacuum 1|c,. The in-states

associated with the descending manifold {oo} are elements of Ha, = Foo ® Foo With
Hro = Cll00,05]] ® Allle 1] Door  Doo = %62(0),@) dwAdd. 2.4.7)

The local coordinate w belongs to the chart Cy, and %6(2) (w,®) dw Add is annihilated by w

and dw.

For the out-states, the roles of the state spaces are interchanged. The out-states at {0} are
the §-distributions and take the form of the in-states at {oo}. They localize on the ascending
manifold X% ={0}. The out states at {oo} localize on the ascending manifold X*° = C,, and
are given by polynomials. Moreover, there exist well defined pairings between the in- and

out-states at the critical points. Indeed, the integral

f ‘P(COUt’OO) A \P(Cin,OO) . cel0,00} (2.4.8)
Xe

yields a product of Kronecker symbols and thus has a finite value, whereby ‘P(C"C’O) denotes
an in- or out-state in the large volume limit on the descending manifold X,, respectively

ascending manifold X¢.

The perturbative state spaces above motivated Frenkel et al. to make an assumption about

the nonperturbative state spaces, [FLNO0G|.

O Frenkel, Losev and Nekrasov conjecture that the nonperturbative, low energy states
are obtained by extending the perturbative states, as obtained by the Taylor approxi-

mation, as distributions on CP!.

In particular, this implies work on the polynomials. Their proposal can be motivated by
three observations. Firstly, the state space around {oo} can immediately be considered as
a space of distributions defined on CP!. From this point of view it would make sense to
put the other state space on an equal footing. Secondly, the perturbative states obtained
above are Eigenstates of the Hamiltonian Hy, = %, cf. eqn. (2.2.10), when restricted as an

operator to the respective charts on which the state spaces live. This Hamiltonian is a linear
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operator which only indirectly depends on the metric by means of the condition that the
gradient vector field is a symplectomorphism. Therefore, its Taylor approximation around a
vacuum configuration simply equals its restriction to the chart of this point. This logic can be
reversed, the “perturbative” Hamiltonian in a chart can be extended to the full Hamiltonian
when its domain is extended to CP'. Therefore, one might assume that in an analogous way
one obtaines the nonperturbative states from the perturbative ones by also extending their
domain to CP!. And lastly, it would be nice to extend the definition of (2.4.8) to CP!.

The consequence of the conjecture above is that the “globalized” polynomials will be the
source for the Hamiltonian being non-diagonalizable. This will be the subject of the following

section.

2.4.1 Polynomial Distributions on CP!

Denote by 2@ A%P the space of “test forms” on CP!, which is the space of smooth differential
forms on CP! with form degree (a,b) and compact support. In this section, I will extend the
polynomial zVz* as a distribution on test functions for arbitrary v,u e C, v—u € Z, and similar
as distribution forms dual to 2 ® A%P. In particular, the vacuum state ¢, can immediately
be generalized by defining it to be the distribution form Ay acting on a differential form

ne2® Al according to
Ao(m) = fc n. (2.4.9)
0

In order to work out the extension for general polynomials, T will firstly concentrate on
polynomials on C. If the exponents n and m are allowed to be negative integers, they may
have poles at z=0 and it will be necessary to regularize them and to generalize them as

distributions on C.

This situation will appear for CP! in the chart Co, around {oo}, and I will generalize the
former discussion to this case. Thereby, the polynomials with support in Cy will be extended

as distributions on CP! in the sense defined for the polynomials on C.

Most results of this section are obtained by using the definitions of Gel’fand and Shilov
[GS64]. The extension to CP! is handmade and the main results of this section (2.4.29)
equals that of [FLNO06, pg. 55|, though I chose a different approach.

The Case C

Let d?z:= %dzAdZ and denote by [ an integration over C with this measure. Let further

v, ueC, v—pueZ and 2 be the functions with compact support on C. The polynomial in

fzvzf‘(p, peED, ni=v-—ueZ (2.4.10)
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is analytic in v, u and locally integrable if the real part of s:=v+p is R(s) > -2, such that the
integral above defines a distribution on test functions ¢. One can understand this, writing

the expression in angular coordinates

o 2n . . .
fzvz“(p:f r”l(f o(re'* re™') e"*da|dr. (2.4.11)
0 0

If R(s) = -2 there might be a logarithmic pole and local integrability fails in a subset con-
taining the origin. For integer values less than —2 there will be poles as explained below. In

two steps I will generalize (2.4.10) as a distribution for more general values of v and p.

Analytic Continuation to R(s) > -2—-m, meN, s¢ Z Firstly, it is possible to continue
(2.4.10) analytically to R(s) > —-2—m, s¢ Z. Suppose that R(s) > -2 and add 0 in a way such

that later the singularities for R(s) > —2 — m will be extracted:

m-1 (k1)

ol k1!
mf;l-ﬂ(k ) 00 b (2.4.12)
+f 2 p+2m ) ¢ ! Izkn
|zI>1 im0 KMV k+l+s+2

where (/)(k’l)(z, Z) = a’;a’zq)(z, z). The last term is minus the insertion under the integral,
integrated over in polar coordinates. The thus obtained equation above is analytic in v, p
up to simple singularities at s=—I—-k—2 A n=1[1—-k or equivalently at v=—k—-1 A p=-1-1.
Hence, it can be analytically continued. If further m is such that —-m—2 <R(s) <—-m—1, one

can simplify this expression:

m-1 (kD)
f 2V 2 = f z"Z“(cp(z,Z)— Y ¢ 00 ol (2.4.13)

k+1=0 k1!

The point is, that in this case, the last term in (2.4.12) can be expressed as

m—1 (k,l) O 0
- f ZVzH (pi(’)zkz’, (2.4.14)
EESERN S

since k+[+s+2<0. In detail that can be seen in polar coordinates. It is now reasonable
to define (2.4.10) as equation (2.4.13) if R(s) < -2 A s¢ Z, as one can always choose m as

above.

Analytic Continuationto se Z._; The transition to s€ Z._; is done by subtracting the
singular term, say at s = -m—1, and taking the limit s - —m—1 with fixed n=1—-k or

equivalently one can take the limit v ——-k—-1 A p— —I—1. From (2.4.12) one can see, that
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this pole corresponds to k+[=m—1, which is the highest order term in

_yk+l kD (4 5
fz_k_lz_l_ld): lim f(z"z"—Zn( ) (Z’Z)) $(z,2)
v——k-1

k'l'! m+1+s

pu—-=l-1
m=2 @b g o 2.4.1
=fz—k—12—l—1(¢(z’2)_ 5 ¢770,0 4p (2.4.15)
a+b=0 a'b!
(a,b) 0.0
WZ“ZZ’H(I—IZI)).
a+b=m-1  a'b!

This equation follows from (2.4.13). Firstly, one splits up the integral into an integration over
|z] <1 and one over its complement. The term with polynomial degree a+ b= m—1 under
the integral over |z| > 1 can be extracted and cancels to zero with the term subtracted in in
first line of (2.4.15). Therefore, the theta-function appears, whereby 6(x) =1 if x>0, xeR

and 0 otherwise.

Differentiating It is important to notice that due to the appearance of the theta function
in the case s€ Z._,, differentiating is not a trivial task. Using the property of the derivative
on distributions one obtains

2 _ k+1
f(azz"“lz—’—l)q):f((—k—1)z—"—22"‘1—%5““'”(;2))4), (2.4.16)

and similar for 0;.

The Case CP!

The polynomials (2.4.10) on C with positive exponents equal to the polynomial states (2.4.6)
localized on Cy. They are well defined on this chart, however not around {oo}. In order to
obtain the nonperturbative states by extending them as distributions on CP!, I will make two
steps. Griffiths and Harris [GH78, pg. 373] suggest that distributions on general manifolds
should be defined locally in charts. Therefore, I will firstly define the polynomials as distribu-
tions on test functions @y with compact support in the charts Cp/o of CP!, whereby their
action on D, is of particular importance. Under this procedure, the generalized polynomials
can be viewed as a direct sum of functionals, each of wich is defined as a distribution on test
functions P, and @, respectively, i.e. A aln P, ®25,. Secondly, by eqn. (2.4.31) I will
define a pairing of out- and in-states, following Frenkel et al. [FLNO06]. The nonperturbative
states will thereby be defined on smooth differential forms on CP!, which are also test forms

since CP! is compact.

Let ¢ be an element in 2y ® A®? with support on the compact subset {0}. Consequently,

szZ"(p: z”2”<p+f z'zt ¢, f:f . (2.4.17)
|z|<1 |z|>1 CP!
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is well defined.'? Using the analysis for X = C, the second term on the right hand side can
further be given a meaning on test functions with support on the compact subset {oo} € CP!.

Rewriting z=w™!

in coordinates on C*, the integral above yields [z"ZKdp = [ 2"ZFd(z,2) +
flw|<6*1 0" 20 P 2P !, ') and by means of (2.4.15) this expression can now be defined
on ¢ € Do ® A%P. Setting w.l.o.g. € =1, the polynomial distribution acting on Qs splits

into a direct sum
f Z2VzHp = f 0 V2o (w,0) + f Mz (2, 2), (2.4.18)
D D

whereby (fb(w,a')) = (p(w_l,a')_l) and D is the unit disk around {0}. The first integral amounts
to zero if ¢ € @y while this is true for the second integral if ¢ € D.

Differential Operators In order to analyze the action of differential operators on the thus
generalized states, I will now introduce another notation in accordance with Frenkel, Losev
and Nekrasov [FLN06]. Thus, denote every polynomial distribution (form) of the type
(2.4.18) with n,meN by

In,m, p,qYo € (25 025) AP, p,qe{0,1},

0 V2072 P(w, ) + [, 2V P(z,2), (2.4.19)
D D

n,m,p, = ’
| P, o (9] {O if nm<0, pg>1

and similarly the in-states build from § distributions by
i (_)m+n

|ny m, p) q>oo [(p] = 5

— f 5 (w, @) dw? Add7 A . (2.4.20)
n.m.

I can now generalize the notion of an exterior derivation on such distribution forms by
means of
dln, m, p, @osc0 [P):= ()P n,m, p, o/c0 (0] (2.4.21)
In order to calculate the derivative of (2.4.19) for the case ¢ € D, I have to apply 0 = dwAd,,:
oln,m, p, @ [$1 = ()P in,m, p,q)o 10P(@,d) do™' A da")
—(ypra L f (Buw-20-2em-24-2)) (2.4.22)
2
x dw? Ada? A Pp(w,d) do® A da?.
Without loss of generality, I set p=a =0 and keep the other degrees of freedom
oln,m,p,q)o [Pl = %f (0ww_"d)_m_2”’_2b)dedd)”’ A

27.[(_) n+m-—1

T n(m+2q+2b-1)!

fa(n,m+2b+2q—1) (@, ®)dw A dd? /\(ﬁ (2.4.23)

—-nln—=1,m,p+1,q) [¢].

12For convenience I shift the test functions always to the right, also if they represent out-states. This will not have an

effect on the results of the following sections.
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For ¢p € 9y one obtains the first term on the right but with another sign. To summarize,

oln,m,p,q)o=nln—-1,m,p+1,q) |z, —nln—1,m,p+1,q)o|a,

(2.4.24)
+2nln,m+2g-1,p+1, Q-
Calculating the exterior derivative of (2.4.20) is not so technical, it turns out to be
oln,m,p,@leo=—(n+1In+1,mp+1,q)oo (2.4.25)

and the prefactor comes from the normalization of the state.

Another important differential operator is the interior product i with some vector field
{ =20, (in local coordinates on Cy). The point is, that the Hamiltonian is given by the Lie

derivative on such polynomial distribution forms. Again, I make use of
wln,m, p, @0 1P):= ()P 1 n,m, p, q)o [ (2.4.26)
Since { = —wd,, in Cq, the action of the interior product is
uln,m,p,q)o==%ln+1,m,p-1,q), “-" on P oA @D (2.4.27)

The action on a distribution |n, m, p, ¢) is derived analoguousely by means of some partial

integration (again, I fix the non-trivial values p=1=a ):

1M, P, Qoo [P = (P 0, m, p, oo [—0P(w,d) dw® ! Add?)

o )
= % ;‘jn' fa(w,@)dw" A A (-1 0R0N$(w,6) +0(@))do" ! AdE" (2.4.28)

=—n-1,mp-1,q¢) [(ﬁ].
In the calculation above I used the fact that the delta function localizes on w = 0 and therefore
the terms proportional to w vanish. Now I can calculate the Lie derivative for any of the
local test functions

ZLln,m, p, q)o = (n+p)ln,m,p,q)o—2nIn+2p—1,m+2q-1,p, oo, (2.4.29)

Zln,m,p, @)oo = (n+1-=p)in,m, p, @) .
Thus, due to the extension as distributions, the operators including exterior differentials
are in general not diagonal on |n,m,p,g)o. These states get mixed with states |n,m, p, ¢)o
on which the operators have a one-dimensional representation. In particular, the analytic
extension of the excited states to X = CP! makes it necessary that the spaces of in-states
can not be considered independently, rather one has to take a direct sum of the extended
state spaces J_foeai_foo.m Here, the underline shall denote the state spaces extended as

distributions.

13Notice, that by the proposal of Frenkel et al. on the nonperturbative states, the topological features of the theory are
preserved, in particular all vacuum configurations are taken into account. In section 2.5, I will argue that also the
instantons will be present and geometrically meaningful.

27



O If # is a perturbative state space related with some descending manifold, I will denote

its extension to X as A.

In section 2.5, I will further specify the difference between the unextended and extended

representation spaces and operators.

The Out-States as Dual States In order to allow an action of the in-states on the out-
states, which are not all test functions, one has to define an adequate pairing. Thereby, the

polynomial states will gain an action on smooth differential forms on CP! while the splitting
(2.4.18) will be preserved.

As explained in section 2.4, up to some normalization factor, the out-states are defined by
the right hand sides of (2.4.19) with the role of the in-states exchanged [FLNO06]

[pz 2272 dzP AdZI AP+ [Hw"@™ dwP AddT AP,
0 if n,m<0

)m+n

o, m, p,qllpl = {
(2.4.30)

oln,m,p,ql = fc‘im”(zz) dzP Adz9A .

2 n'm!

Thus, |n,m, p, )00 are test forms if restricted to Cp, and distribution forms in a neighbor-
hood of {oo}, whereas ¢/00(n, m, p, q| are test forms on Co, and distributions around {0}. For
that reason, it makes sense to generalize the pairing for in and out states for distributions,
setting [FLNOG|

f \p (oud) A\I_,(in) :=f \p (oud) A\P(in) +f  (out) A\I](in). (2.4.31)
X D X-D

Assumed that the § distributions split into a part of value 0 and the distribution, this pairing
is fine on all combinations of nonperturbative states but on «(n,m,p,qln’,m’,p’,q"Ye. It is
still true that no distribution is paired with another distribution, however, the distributional
polynomials get evaluated on functions on which they are not defined. The way out is to
set this pairing to zero, which equals the definition by Frenkel, Losev and Nekrasov, cf.
[FLN06].!* Under these circumstances,

i<n,m,p,qin',m',p',q") j = 6w mm 6 psp 18g+q16i,j, 1, ] €10,00}. (2.4.32)

and the nonperturbative states may act on smooth differential forms (when expanded in the
charts). According to (2.4.31) the space of distributional polynomial states remains a direct

sum, consisting of a distribution and a function. I will denote this property by

Hy=Ho e Hy (2.4.33)

They define oo(n,m,1,1|n,m',0,0)g := PV[f€<‘z‘<lz"/_"_22m/_m_2 +f€/<‘w|<1 w"_”/a')m_m/), whereby
PV(f(e,e’)) equals the value of f which is independent of e, and w.l.o.g. I chose some values for the form
degrees.
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whereby #; means the distributional part acting on Zo,®A®? by (2.4.15) and on polynomial
functions according to the definition above, while /4 is the perturbative, unextended part
localized on Cy and acting on functions on this chart. Notice that such a splitting is not

necessary for the & distributions which are already globally defined on CP!.

Cohomology of the Supercharge I will now fill in the missing details for my assertion
in section 2.2.2, that the cohomology of the supercharge is not affected by taking 1 — oo,
and that it still equals the space of ground states.

The kernel of Qo = 0+0 is generated by {|n,m,1,1)0/00,10,0,0,0%}. Among these, the
states |n,m,1,1)so, n,m =1 are in the image of Q. For n=1, one finds that d[|n, m,0, 1)+
2Wnln -1,m+1,1,1)s] = £n|ln—1,m,1,1)¢ and similar for the antiholomorphic differential.
Therefore |n,m,1,1)g, Vn,m =0 belongs to the image of the supercharge. Consequently,
the cohomology of Q is effectively restricted to {|0,0,0,0)¢,[0,0,1,1)s}, which are just the
ground states. By a direct calculation one finds, that the solutions of Heoln, m, p, ¢)0/00 =0,

Hoo =%+ %5 equal the kernel of Q, which proves the assertion above.

2.5 Interpretation of the Extension

Extending the states associated with the descending manifolds to distributions on X was
the source for a sort of non-locality. Some state spaces which formerly were restricted to
live in different charts, are now intermixed by operators containing exterior differentials.
In this section, I will specify between what state spaces this happens. Moreover, this kind
of non-locality can only be seen on the excited, non-topological states, and therefore must
be analyzed as an effect of the broken topological phase. Therefore, certain aspects of the
geometry of the target manifold should become visible. To tackle those, I will decouple
the intermixing effect in the operators, extracting the mathematically responsible parts.
My discussion follows Frenkel et al. [FLNO06], but also includes my own interpretations, in

particular that of non-locality as an instanton effect.

Perturbative States and Naive Operators

Perturbatively, the state spaces under consideration are associated with the descending ma-
nifolds and include the part of the low lying spectrum which has a finite energy spectrum
in the limit A — oco. I will call these the perturbative spaces of states. They seem to be
independent from each other, in that they are locally defined on the descending manifolds
and do not intermix under the action of observables. This changes for the excited states, as

soon as they are extended to X.
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Besides distinguishing the perturbative states from the extended ones, T will further in-
troduce what I call naive operators. They act on the extended states as if they were acting
on the perturbative ones. For instance, the naive Hamiltonian is diagonal on all extended
states, ,%{(naive)ln,m, p,@)o=n+p)ln,m,p,q) ¥V n,m,p,q, whereas the full Hamiltonian can

(naive)

now be decomposed Z; = $( + g. I will also define a representation of this Hamiltonian
on the perturbative states in the following way. Instead of g, consider the operator § :=goe,
wherein e denotes the extension /5 A A;, i €{0,00}. Consequently, § acts on #; and the

full Hamiltonian can be represented on the perturbative states by £, +6.

O For the rest of my thesis I will fix the following notation. Let & be an operator acting
on the perturbative state space . I will denote the same operator, acting on the

naive) - For convenience I

extended state space A by @ = @ + gg, wherein really @ = 6"
use this abuse of notation, it will always be possible to conclude from the context if &

denotes the operator acting on .# or @3V acting on .

The additional operator g is supposed to make local geometric aspects of the target space
visible (in contrast to the global, topological invariants), and causes that the Hamiltonian is
not reducible on all states: non-reducibility of the Hamiltonian can be viewed as an effect of
the broken topological phase. More ventured, I am tempted to say that the additional term
can be understood as an effect of target space gravity, since beyond the topological phase,
invariance under diffeomorphisms is broken down to invariance under the isometries of some

background metric.

The Local Geometry behind the Deformation Term

In order to understand what kind of geometry becomes visible in the deformation operator
&, T will now discuss its proper interpretation as a Grothendieck-Cousin operator (GCO), cf.
[FLNO06, Har67, Kem78, Har70].

The Hamiltonian %, represents the action of ¢,(-, ), induced on differential forms, cf.
(2.1.11). Therefore, the perturbative state spaces can be interpreted as representations of
the symmetry generated by the gradient vector field v = z0, + Z0; associated to the Morse
function. The target manifold X = CP! is thence covered by different representation spaces,

each of which is supported on a descending (ascending) manifold.

Frenkel et al. [FLNO6| had the idea to describe those local representations by means of
sheaves on X.' Let X be endowed with the Zariski topology, then Xy = Cg is an open subset
while X, = X\ Xj is closed. The representation 4 can now be described as follows. The

homogeneous rational functions @x[n]. on X that are regular except for a pole of order n>0

15For a definition of sheaves and an introduction, cf. [GH78, Har70, Gat02].
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at {oo} form a sheave on CP!. According to section 2.4.1, T can identify

Fo\{Do} = ) I'(Xo,0x[n, mlso), (2.5.1)

|n—m|>0,n,m=0
whereby Cx[n, mly = Ox[Nloo ® Ox[Mls and T'(U,Gx[n, mls) denotes the sections of those
polynomials, restricted to the open subset U < X.!6 In particular, the restriction to X is
injective, and the analysis of section 2.4.1 implies that the sequence

0— @ T(X,0x[n mles) — o\ Ao} > Ho\ (Ao} — 0 (25.2)

n,m>0

is exact. It summarizes the extension of the local (irreducible) representations to (non-

reducible but indecomposable) representations defined globally X.

It would be nice, if not only # could be related with the theory of sheaves, but also
Hlo. Since the support of A is a closed set but sheaves are defined on open sets, some
generalization will be necessary. This will lead to the theory of local cohomology [Har67].
Let F be a sheaf on X, Z c X a closed set and U c X an open set such that Z c U. The
support of a section se€ F(U):=T(U,F) is {pe U: sp # 0}, where Sp 18 the germ of s in the
stalk F,g.17 The sections of F with support in Z are defined to be the subgroup I'z(X, F) of
sections F(U), whose support is in Z. The sections with support on closed subsets will be at
the heart of the interpretation of H.

The term “local cohomology” enters the work of Frenkel et al. [FLNO06]| through a pub-
lication of G. Kempf [Kem78], wherein the sequence (2.5.2) appears as an example in the
introduction. A huge part of the paper is dedicated to an analysis of the following set-
ting. Given a topological space X, filtered by closed subsets X = Zy2 71 2---Z, > @ and
supplemented with a sheaf F. Kempf derives an exact sequence which he calls a “global

Grothendieck-Cousin complex”:

0 6, 1 02 12 93
0—T(X,F)—Hy,, S HY,,, BH,,, 2 HE —0. (2.5.3)
Here, I shortened Hé,-/Zm(X’ F)= Hé,-/Zm’ Hgn/(D = HZ, and the spaces Héi/ZiH denote (ab-

stract) cohomology groups, associated with the quotient presheaf I' 7, (X, F)/T 2z, (X, F). These

are the so-called local cohomology groups.

By comparison, for the toy model on X = CP! one has F = Dnm>00xn, mle and the
closed sets X o {oo} > @. Consequently, Hno \{Ax} can be identified with the first local
cohomology group HL (X,F). This is the mathematical answer to the question what sort of
local geometry of X gets visible due to the excited states. Because the complex above is

called Grothendieck-Cousin complex,

16The sections of I'(Xy,Ox (1, mleo) are polynomials in the inhomogeneous coordinates and thus obey the equiva-
lence relation C2\ {0} 3 (f,g) ~ A(f,g), f € C\ {< 0} of the homogeneous coordinates. Therefore, I may take the
direct sum.

17Let {U;} denote an open covering of X, a stalk Fp of F at p € X is the set of pairs (Uj, s;), p € U, whereby s; € I'(U;)
modulo s,-IUmU]. =S IUl.nt. An equivalence class in Fp, is called a germ, and I denoted it by s, [Har70, Gat02].
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O the operator § is called the Grothendieck-Cousin operator (GCO). T will also denote
the operator g in § = goe as Grothendieck-Cousin operator, which I am considering

will always be evident from the context.

Non-locality as an Effect of Instantons

The additional term § has besides the geometric a further physical interpretation. It contains
the nonperturbative effects due to the presence of instantons. Instantons, considered as
tunneling solutions, can be viewed as non-local field configurations that procure some of
the structure of the theory as defined in the chart around the repulsive fixed point {oc} to
the one defined in the other chart around the attractive fixed point {0}. Since there are no
anti-instantons this does not apply the other way around. This makes it obvious that one
might consider the following: The Grothendieck-Cousin operator § mixes the state space &

with #oo, but not the other way around, and in that sense it mimics the instantons.

Mixing of Holomorphic and Antiholomorphic Parts

A further speciality of the Grothendieck-Cousin operator is that it mixes the holomorphic
and antiholomorphic parts. In particular, it contributes only on states which are not purely
holomorphic or antiholomorphic. From (2.4.29) follows that kerd = {|n,0, p,0)¢,10,m,0, g)o :
n,m=0, p,qei{0,1}}. For that reason, as soon as the excited spectrum is considered, the the-
ory can not be divided into an holomorphic and antiholomorphic “half”. Just as the existence
of non-diagonalizable operators, this is a typical characteristic of logarithmic conformal field
theories [DF08].

2.6 Generalization to General Target Manifolds

In the following sections I will generalize the discussion to a larger class of manifolds X,
again relying on [FLNO06]. For convenience I will restrict my considerations to the in-states.
Furthermore, I will restrict to Morse functions with the property that their gradient vector

field equals v = x?0, + x%d;, where x* and x? are local coordinates on X.

2.6.1 The Perturbative State Spaces

The perturbative state spaces localize on the descending manifolds, thus I will first start
with a generalization of those.

Let X, be a descending manifold with critical point x, which has an index ind(x,) =

1

dim¢ X — ng. By coordinates along X, I understand (holomorphic) coordinates x-,...,x"
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such that X, is the hyperplane defined by the zero set of the complementary, transversal

natl | ydimeX Tp the toy model, there exists one holomorphic coordinate z

coordinates x
along Xy = C and no transversal coordinate, whereas X, = {oo} is zero dimensional and has

just a transversal coordinate z.

Now the perturbative state spaces can be generalized. In the toy model, the vacuum
associated with Xy was the characteristic function in the coordinate along Xy, whereas the

vacuum associated with X,, was a Dirac distribution. This can be generalized as follows:

O A ground state A, is a distribution form defined by [y Ay A= [y nlx, on differential
forms n € Qq(X).

Again, in the toy model, the excited states on Xy are polynomials in the coordinates along
Xq multiplied with the exterior algebra again along X,. The excited states associated with
Xso which has only transversal coordinates, are polynomials in interior derivatives and simple

derivatives along the transversal coordinates. This is also canonically generalized:

0 The excited states associated with X, are given by

(Clx N & All[dx*D g=1,...,n, ® (ClI0a]] ® Alltal) a=ny+1,...dime X * Da-

2.6.2 The Grothendieck-Cousin Operators

In order to determine the Grothendieck-Cousin operators for the more general case I will use

two properties of § as determined before.

The first property is that the Grothendieck-Cousin operator is a mapping between different
representation spaces which are locally defined in charts of X, and that it appears in an
exact sequence of the kind (2.5.3). This is, however, too general. In the situation of the
toy model, the GCO is a mapping between two state spaces of relative codimension one, i.e.
{oo} < Cp = codim({oo},C) = 1, where the uppercase ¢ denotes taking the closure. In order to
preserve this property, one must further constrain X and the sheaf F. I will not articulate
those conditions and refer the reader to the publication of [Tch04]. Under the conditions
explained there and which will always be satisfied in this theses, X and F are such that the
Grothendieck-Cousin operators are mappings between representation spaces on descending
manifolds with relative codimension one, (Z;\ Z;;+1) < (Z;—1\ Z;) = 1. This restricts the state

spaces between which Grothendieck-Cousin operators exist:

0 The GCOs are mapping between perturbative state spaces whose descending manifolds

have relative codimension one.

36; :Hy ,, —Hy,, < (Zi\Zin)<(Zi1\Z). (2.6.1)

The second property does not make use of the full geometric analysis described in section

2.4.1 and is more heuristic. The situation of the topological A-model I am going to introduce
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in the next chapter, will lead to an analysis of an infinite dimensional manifold. Thus, I do
not know how to transfer the results above from its roots. When it comes to determine the
GCOs, I will rather search after an adequate extension e of the perturbative representation
spaces, such that I find operators g which have the properties of cohomology operators on
the extended complex. Thus, in order to determine the extension, I will make use of the

following observation:

I have explained that the polynomials, extended as distributions, fall into a direct sum
of functionals on test functions in charts — respectively via (2.4.31) this might be used for
more general functions (2.4.33) if X is compact. The observation I will concentrate on is
that the different functionals, naturally defined on the different charts of X, all have the
same quantum numbers with respect to the naive Hamiltonian, f.i. in (2.4.33), # and 7
are degenerate. Therefore, I propose that the analytic extension e should be performed such
that the local spectrum in a certain chart, for instance A, is enlarged by adding the direct
sum of the possible missing “dual” states, on which the naive Hamiltonian is degenerate.
The mapping g is then a mapping from this dual part onto the local cohomology group at

the other chart, say around {oo} :
0 The GCOs act non-trivially on the “dual part” of the spectrum of the naive Hamilto-
nian, obtained by an extension of the state space
Tx, > Ty =T, ® Ky, > Hx,— 0, (2.6.2)
where Xg < Xo and #, denotes the states on which the symmetries of the theory
become degenerate.

Instead of determining the Grothendieck-Cousin complex from the roots, in the following

chapter I will make use of this heuristic recipe.
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From the A-Model to Morse Theory 3

This chapter has again three parts. I will successively reproduce the situation of the last
chapter for the topological A-model, reformulating it as an infinite sum of Morse theories of
the kind just considered. Thereby, I will obtain its perturbative representation spaces. It
will be possible to identify them with representations of conformal supersymmetric ghosts,
which I will further substitute for the A-model. Bosonization of the conformal theory will
enable me to derive the Grothendieck-Cousin operators and propose the extension of the
perturbative state spaces. Due to the properties of the Grothendieck-Cousin operators it
is then evident that if the topological A-model is a conformal field theory, it must be a
logarithmic conformal field theory beyond its topological sector. The main reference of this
chapter is the publication of Frenkel et al. [FLNOS].

In the first part, I will massage the topological A-model, [Wit88b, Mar05, DVV91], into
a first order form such that in the large volume limit, it yields a 6 distribution on the
instantons. The action thus obtained is that of a supersymmetric bc-system, and I will call

it the topological supersymmetric be-system (Thc).

In the second part, 3.2 - 3.6, I will reverse the direction of analysis of [Wit88b]| and derive
the super quantum mechanics associated with the Thc, as was done by Frenkel et al. [FLNO0S].
The result will be a theory that is not yet Morse and demands two further steps to reproduce
the situation of the last chapter. I will discuss how to do that in section 3.2 and afterwards
restrict my considerations to the target manifold X = CP!, cf. section 3.3. I will then derive
the perturbative state spaces associated with the descending manifolds corresponding to the
fixed points {0,00} € CP!. They can be modeled by some conformal supersymmetric ghost
system (CSbc) that T introduce in 3.4. In order to formulate the CSbc on CP!, it is necessary
to implement chart transitions. Therefore, I have to further introduce the chiral de Rham
complex, invented by Malikov et al. [MSV99], cf. section 3.5.1.

That the representation spaces of the Morse theory behind the Thc can be modeled by a
conformal field theory raises the question whether this could be true for the A-model itself.
I will only touch lightly on that question, pg. 52f, and otherwise assume that the CSbc
will simulate all aspects relevant for the perturbative low energy spectrum of Morse theory
behind the A-model.

In the last part, starting with 3.6, I will extend the perturbative representations to the non-
perturbative spectrum and introduce the infinite dimensional analogues of the Grothendieck-
Cousin operators. This analysis is done for the CSbc, and I again assume that it generalizes
to the A-model. The most important step will be to bosonize the CSbc. To do that, T will
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use and generalize the methods described in [FMS86, Fri85, FF91, FF90], cf. 3.6.2. This
will enable me to analyze the algebraic properties of the representation theory for the per-
turbative and nonperturbative states of the Morse theory underlying the A-model. Some
parts of that investigation have been published in [VF09]. My approach differs from that of
Frenkel et al. [FLNO08], who relied on a publication of Malikov [Bor01]. Motivated by a prior
work of Frenkel and Losev [FLO7]|, they proposed that the Grothendieck-Cousin operator
is the zero mode of a particular field, which is part of a vertex algebra constituted by the
CSbc after rewriting it in logarithmic coordinates and extending it by additional field zero
modes. My approach will make use of the bosonized CSbc and of the method of logarithmic
deformation invented by Fjelstad et al. [FFH02]. T will discuss the approach of Frenkel,

Losev and Nekrasov and its relation to the method I have chosen in an appendix C.

3.1 Massaging the A-model

The A-model is a two dimensional field theory with an A =2 (A = (2,2)) worldsheet super-
symmetry [Mar05], cf. appendix B.1. T will start with preparing the topological sector of this
model and with the transformation of its integration kernel in the path integral to a delta
distribution. For this purpose, let £ = CP! with local metric h = dz®dz and volume form
d?z:= %dzAdZ, as before. The indices y, v will denote local coordinates o* : ol=t 0 =00n
Y considered as a real manifold. The complex coordinates are z=t+iog, zZ=t—io. Further, I
will need the epsilon symbol €%? = —€%* = 2i, as defined by %wwdx“/\dx" =: %wuve’”’-dzz. The
target manifold X be a simply connected, connected, compact Kéhler manifold with metric
Ag. T denote its local holomorphic coordinates as x* with small latin letters a=1,...,dim¢ X
and similarly the anti-holomorphic coordinates as x%.
The A-model, without auxiliary fields, has the action
S= fzdzz {Agu,;(azxadzxi’ +0:x%0,x" +in°D,y” +in’ Dy - %Rai)cd_ n“ni’wcwd_}, (3.1.1)

where the embedding x is a Grassmann even and ¥ a Grassmann odd scalar on X and with
values in x*(Tl’OX), T, e TE,QY(E) @ x*(QY0(X))) is Grassmann odd and similar holds for
7. The covariant derivative, for instance on w4, is given by D;y® = 05y +rgcaszu/0. I

will call the Grassmann odd fields fermions, though they have the wrong statistics.

Among others (cf. appendix B.1), this theory has a symmetry generated by

1 The reader who is puzzled by the presence of A~! in the last term in (3.1.1) might consider the following. Take the
usual action with metric g and not Ag. Call the fermionic one form p?, its indices are lowered with g ab- Now
introduce Ag and identify 7% = p%, where 7% is the corresponding field lowered by Ag,j- Then Rzédpapbu/éu/d =~

A‘lﬁgédnanbwéwd because pg =171 (Agabnb), whereas RZM =R}, and I omitted the tilde in the action.
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6 = K++Q++ + K__Q__ :

5xu=K++wa, 5xd=K__1//d,
owt=0, oyt=0, (3.1.2)
om =2ik"" 0zx%+ K7 T mly©, onf =2ix* 9, x%+x " Fgénbwé :

From the transformation of the fermions one can conclude that the holomorphic embeddings
0;x% =0 =0,x% are fixed points of that symmetry. These are called instantons, whereas
the antiholomorphic ones, which are fixed points of another symmetry generator, are called
anti-instantons. The nilpotent generator Qp = Q4+ + Q—_ is independent of the geometry
of the domain manifold in the sense that [Py, Qo] =0, as can be derived from the relation

[Qo, Gul = Py, where G, is another supersymmetry generator, cf. appendix B.1.

The action above has more than just instantons as fixed points. In the following I will make
localization on instanton configuration space manifest, in order to satisfy 0 of A. Therefore,
I will again apply the Bogomolny trick and add a term which excludes the anti-instantons
(i.e. antiholomorphic embeddings) from the global minima of the action. When I write the
Lagrangian in first order form and integrate over the S! coordinate, the action will have the

same shape as the Morse theory of the last chapter.

Excluding the Anti-Instantons

Consider the bosonic part of the action, it can alternatively be written as
fdzz (210,x* - x*(wg)) or fdzz (210zx%1% + x* (wK)) , (3.1.3)
b b

where wg = %/lgal-] dx® Adx? is the Kihler form. Obviously, the action has both sorts of
instantons as global minima. In order to exclude the anti-instantons I subtract fZ x*(wg)

from the action above. The transformed action
_ _ _
Sy = fzdzz (2/1ng 05xﬂasz +im Dy’ +i7Ti,Dz1I/b _ ﬁRal}cd_ ”a”bwcwd (3.1.4)

does not have the full supersymmetry of the former one but still the symmetry generated by
Q++ and Q-—.

The pullback x*(wg) of the K&hler form is a volume form on X and hence topological
with respect to the domain manifold. However, it is defined with respect to the target
space metric Ag and the question remains if it changes the topological sector of the theory.
Since the Kéahler form is closed, the integral [sx*(wg) = fx*(z) wg does only depend on
the cohomology class of B:= x.(X) € H»(X,Z). Namely under a smooth mapping f: X — X,
gpU,V)— grip ([ U, fi V) the homology classes are not changed. Thus, according to [Nak03|,

x*(wg) and (fox)*(wk) are in the same cohomology class. Therefore, the integral above

37



is invariant under a smooth change of the K&hler form, respectively the metric and the

topological sector is not changed by excluding the anti-instantons.

By the choice of B, the instanton configuration spaces can be distinguished. A familiar
way to make that visible in the action is to introduce the analogue of a theta angle. Instead
of subtracting [s x*(wg) from (3.1.1), one adds a closed, complex two form with real part
proportional to the Kéhler form B = B_; dx“ A dxb:=1 —wg on X, T=1,;dx*A dxP. With
this definition

Sr,fzsﬁfz x* (1) (3.1.5)

and the last term yields the “theta angle”. Since 7 is a closed differential form on X, the
integral again depends only on the homology class B. In order to preserve 7, the limit A — oo
is reformulated as the condition that 7 ,;:= Bj - % 8,5, — —ioo, whilst T =const.. In the

following, I will not make use of the theta angle 7.

First Order Formalism and the Supersymmetric bc-System

To make localization explicit, I introduce a Lagrangian multiplier p = p, dzdx?+ p; dzdx?

and rewrite the action in first order form

Sy :fdeZ [ —lpaazx“ _1pgazxﬂ ‘H”uDziI/a +17TaDz1[J“+ ﬁ (gabp“pB_Rchd' n“nbwcwd) ] '

(3.1.6)

In the large volume limit A — oo, the exponential of the action becomes a delta function on
the instanton moduli spaces while the action itself becomes what is called a supersymmetric

ghost or bc-system
Seo = f d?z (~ipa0zx® —ipg0.x? +im 09" +in 70,97, 3.1.7)
b

where I redefined p/,:= p,+T2, w°m;, and already left the prime away in the formula above.

The supersymmetry takes the simple form

[Qo, x“1 =y, [Qo,x*=y*,
[Qo,pal =0, [Qo, pal =0, (3.1.8)
[QO!nd]:pda [QO»”a]:pua

in analogy with (2.1.10), and Qo plays the role of the BRST operator. In section 3.5.1 it will
become clear in what respect Qp can be identified with the de Rham differential. The action
Seo 18 Qp-exact

Seo = fz d%z [Qq, —i(m405x% + 50,x9)], (3.1.9

and I will call it the topological bc-system (Tbc). It will be the main character in the

following.
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Remark: Let me conclude the large volume limit with a remark on the symmetries of the
Tbe. The action (3.1.7) has an additional bosonic axial symmetry in analogy with (B.0.4),
that the original action did not have. Therefore, it seems that in the large volume limit, the
theory acquires an additional anomaly. In section 4.2 I will prove, that the bosonic axial

symmetry will be broken by the Grothendieck-Cousin operators.

3.2 The Morse Theory behind the A-model

In analogy with Frenkel et al. [FLNO08], I will now reverse the analysis of Witten [Wit88b]
to obtain the super quantum mechanics (SQM) underlying the Tbe. It will differ in two
aspects from the model of chapter 2. The target manifold will not be simply connected and
the critical manifold of the Morse function will not be zero-dimensional, such that additional
steps have to be taken to reduce the super quantum mechanics derived from the Thc to the
Morse theory discussed in the last chapter. Afterwards, I will restrict to the case X = CP! in

section 3.3.

To extract the Morse theory, let = =R x S! with local coordinates z = t+io. For a fixed t,
the embedding x%|;(g) is an element of loop space LX := {yE C®Sh X) - Y is contractible}

and can be represented by a Fourier series

X% (o) = ) xie . (3.2.1)

nez
Similar holds for the other fields, for instance pg4l:(0) = ,.c7 panei”". The modes x4 are local
coordinates on LX and one can reformulate the Thc as a SQM on LX by integrating out the

dependence on S!. Up to irrelevant prefactors, the holomorphic part of the action yields

S0 = —ifdt( Pa,-nl0:x% — v4(0)] = - nl0;pe —whoy v“(x)]) 3.2.2)
and similar holds for the antiholomorphic one. Summation over n is understood and
Va4 (x)0qp = —nxﬂ%. The Lagrangian can be interpretedd as an infinite sum Lagrangians

of the kind (2.1.9), if the v, are interpreted as components of the gradient fields of a Morse

function.

The gradient fields are associated with the generator of loop rotations d,. It is represented
on the loops x by means of the vector field v(x) = —i0,x%0, +i0,x%0;, 04 := a;fc“ and on the
coordinates of LX by integrating over the parameter o, [q v*(x)0q =YX, V30an. Therefore,
the fixed points of v are the constant loops, i.e. points on X. These are the zero modes x.
Consequently, the fixed points of the gradient field are not isolated but comprise what is

called a “critical manifold”, which in the situation above is X c LX.

Another way to see this is by analyzing the spectrum of the Hessian Hg,,, = —n. The

coordinates x% with n >0 belong to negative eigenvalues and thus are coordinates on the
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ascending manifold, coordinates with n <0 belong to the descending manifolds while the

zero modes xg are coordinates at which the Hessian is indifferent.

The instanton equation can be written as the flow equation generated by the vector field

0;x%—v%x)=0;x*+i0,x% =0, (3.2.3)

which is nothing else but the condition of holomorphicity dzx% =0. In local coordinates of

LX the instanton equation is

0;xn—v4(x) =0, vi(x)=—-nx". (3.2.4)

However, the SQM above differs in two aspects from the one of the last chapter. Firstly, the
critical points are not isolated and secondly, the target manifold LX is connected but not sim-
ply connected. This latter observation raises the question whether there exists a function f
such that df =1,gy. Here, g, is the induced Kahler metric gy(11,12) := [q Agly(11(0),12(0)),
N2 €T(Ty LX), TyLX :=y*TX are vector fields along the loop y, and the contraction is un-
derstood as Lwgylnl = f51 Agly(v(o),n(0)). In the next section I will introduce a potential such
that the vector field v can be obtained as its gradient. The potential will, however, not be

single-valued on loop space.

3.2.1 The Potential

On a simply connected, symplectic manifold, every symplectomorphism can be expressed as
a gradient of some potential.> The universal cover of loop space LX := {(y,7) | y€ LX, ¥ : D —
X s.t. y=7lsp}/ ~, where ~ means equivalence under homotopy and D is the complex unit

disk, is a simply connected and symplectic manifold (with the induced Kahler metric).

In the situation of the last chapter, I subtracted a term —A [df to get rid of the anti-

instantons. It trivially determines the Morse function. This motivates to try
H =~ fD 7 (k) (3.2.5)

as a candidate for the Morse function on LX. Indeed, taking the exterior derivative and
evaluating it in the direction of a smooth vector field n € T,LX, one obtains an appropriate
one form on the boundary dfy(nnl = —f51 wk (05Y,1m) = tygy[n], while the orthogonal, radial
direction does not contribute. However, the potential is only single-valued on LX but multi-

valued on LX, namely

70 = f,0)= [ 57 @i 526

2A symplectomorphism is a vector field v s.t. £, wx = diy wg =0, with wg the symplectic form. If the manifold is

simply connected, a closed one form is already exact and tywg = d f for some f.
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when two disks ¥ and 7' with the same boundary y are glued together (which I denoted by the
e ). The sphere S2 is the generator of Hy(X,Z) and counts the components of uN(X), X<LX
in the universal cover u : LX — LX. More illustrative, in the case X = CP! it counts the

number of times the disks are wrapped around X.

That the potential is multi-valued on loop space has an impact on the space of states and
I will discuss that in section 3.3.1. For the time being, let me note that under the mapping
u, LX fans out into leaves in LX, distinguished by H»(X,Z). According to Frenkel et al.
[FLNO8|, I will denote these leaves as LX,, ne Hy(X,2).

3.2.2 Isolating the Critical Points

I will now approach the second problem and isolate the critical points. This is done by
deforming the instanton flow equation. The deformation will be such that the fixed point set
is reduced to the points {0,00} € X. Frenkel et al. do achieve this by introducing an additional
target space symmetry into the action, which for the case X = CP! will be a generator of the
C* symmetry of X [FLNOS].

The starting point is the supersymmetric be-system (3.1.7) which I generalize in analogy
to the Morse theory action (2.1.9)

S::fdzz ( —ipa[dzx“+pV“(x)]+ina[05w“+p6bV“(x)wb]+c.c. ), (3.2.7)
b

where py € R. This step can be understood as a deformation of the vector field v(x) =
—i05x%0 4 + 10, x%0, according to v(x) — ¥ (x) = v(x) —p V(x). The instanton equation is
changed to

0:x+uVi(x)=0x“-7%x)=0 (3.2.8)

and its critical points are solutions of 7%(x) = 0.

In order to approach the situation of the last chapter, it would be nice if in the situation
X =CP! these were again {0,00} € X. This can be achieved by choosing the additional vector
field to be V(x) = x%0, + x%04, which is a generator of the C* symmetry of CP!. Assumed
that the composite vector field 7 (x) is not degenerate, the critical manifold reduces to the

intersection of the critical manifolds of V and v, which consists of the points {0} and {oo} € CcP!.

A deformation of the gradient vector field must be followed by a redefinition of the Morse

function f
@) — - fD ¥ (wk) —ip fs Hy(y,0)do, (3.2.9)

where Hy is the solution of dHy(y,0)[n] = wg(V,n), ne T,LX. The deformation term only
depends on the boundary y and, hence, does not contribute with an additional term to
(3.2.6).
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The Deformation as “Gauging” the Theory

In the case of the symmetry I have just implemented, the action further simplifies to
S= f d?z ( =ipa(0z + Wx* +im,(0; + Wy +c.c. ), (3.2.10)
b

where p now looks like a gauge connection. Frenkel et al. give this interpretation a meaning
by reconsidering the original action as a quantum mechanical system [FLNO8|. T will follow

their discussion for the bosonic part which thus takes the form

Sbos = _if
R

with H(x, p) = plvl, plv] = [q (pa(—i0sx9) + pa(i05x?))do. The Hamiltonian H(x, p) couples

fl(puatx“+pdatx’z)thda—dtH(x, i, (3.2.11)
S

to the one form dt on R and one might be tempted to consider the more general situation
where it is a representation of some Lie algebra coupling to a gauge potential A(f)dr =
Ap(t)HY(x, p)dt with [HL, HM] = fLM N 3

In order to interpret the deformation as a sort of gauging, I let X = CP! and choose
H!:= plVv], H?:= plU] where U(x) =i(x%0, - x%;) is the UQ1) =R/2nZ generator on X and
V = x%, +x%;. These Hamiltonians are indeed representations of the Lie algebra of C*
with [H!, H%] =0. The deformation of the action can then be interpreted as a deformation
of the Hamiltonian H(x, p)dt— H(x, p)dt—AL(t)HLdt with A; =y and Ay = p. The form of
the action (3.2.7), now including fermions, is reproduced when defining Az :=pu+ip, u,p €R

s:f d*z (—ipa[azx“+A5 VAxX)] —ipal0x* + A, V(X))
z ) (3.2.12)
+ima[0z9" + Az 0, V()Y +ina10,y% + A, 05V ()] ) :

and specifically, for the discussion above, when setting p = 0. For finite time evolutions,

the holonomy of A is invariant under the U(1) gauge transformation p — p + Z”T", U= .
However, the gauge field is not quantized and I will only use the name “gauged”, if I want
to explicitely distinguish the action (3.2.10), from now on called the “gauged” Thc, from the

action (3.1.7).

3.3 Perturbative Morse Description of the A-Model

From now on I will restrict my considerations to the case X = CP!. Furthermore, I will write
x for the homolorphic and % the anti-holomorphic target space components and similar for
the other fields. I assume that these coordinates are the inhomogeneous coordinates on CP!.

The action I am going to consider is the deformed one (3.2.10) with pe (-1,0).%

3The idea behind this is that exp{ J A()Hd#} can either be considered as a propagator, A = 1, or the holonomy of a

gauge field.
4The gauge field component g is not allowed to be an integer since otherwise 7 would be degenerate. This will

become evident in equation (3.3.5).
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In the consecutive section I will determine the perturbative state spaces of the underlying
Morse theory. After I will start with some general discussion of the in-state spaces and then
determine the state space located on the descending manifold with fixed point {0} € CP! in
section 3.3.2. In order to derive the perturbative state space on the descending manifold
with fixed point {oo} € CP!, it is necessary to make a chart transition, and I will explain how

this works in section 3.3.3.

3.3.1 The Perturbative State Spaces

In the last chapter and particularly section 2.6, the perturbative state spaces associated with

a descending manifold X, have been obtained as

(Clxk ® AlldxM11),,_, . ® (CLIO,1 @ Alll]) Ac,

p=ne+1,...,dimg X °

wherein dx* are differential forms on and x* are the coordinates along X, which has dimg X, =
ne, while the derivatives are in the transversal directions. The vacuum state A, was the

volume form on X, extended in the transversal directions as a distribution.

This situation carries over to the Morse theory behind the supersymmetric bc-system up
to a peculiarity. Since LX is not simply connected, the perturbative state spaces and also
the descending manifolds will be branched. On every leaf, the situation is however the same

as in the toy model of the last chapter.

Branching of the State Spaces

In the Morse theory of chapter 2, the perturbative states corresponding to a descending
manifold X, have been obtained by solving HP*™V¥ = E¥, and taking the large volume limit
of eMW, cf. 2.4. These states should be related with those of the Morse theory behind the
A-model with action Sy =S— 5 x* (wk).

Including the points {too} € R such that X =~ S?, I can split the integral
Jox* (k) = [p 7 * (k)= [p 7" (wk). Here, (77 o§7")* = x*, 7~ covers the hemisphere of
CP? including a repulsive fixed point and ¥ covers the other hemisphere of X, including an
attractive fixed point. Therefore, the ket states of the super quantum mechanics on loop

space and associated with some descending manifold LX,, are of the form
Py =elo? @Oy (3.3.1)

with ¥ a differential form on LX. Since the integrand is not a total derivative, ¥y depends
on the integration “path”. In particular, from the discussion in section 3.2.1 follows that the

states are homotopically distinguished by H,(X,Z), which measures how often X is wrapped
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around X. Consequently, one can distinguish a stack of Hilbert spaces by the winding number

n via the relation
VY, = ef"ﬁHZ(va) G Yo , Ynem= ef”EHZ(X'Z’ . *(wK)\I"m . 3.3.2)

The full state space of in-states, corresponding to some critical point x, € LX, is the tensor
product of the state spaces with a specific wrapping number,
A= K AN, (3.3.3)
neHy(X,2)

However, since all states are isomorphic by a multiplication with

qn = efnst(X,z) 7™ k) , (3.3.4)

I will restrict my discussion to Jﬁ;‘}).‘r’

3.3.2 The Perturbative State Space on LX| ;.

The operator g may serve to distinguish not only the leaves of the state spaces but also
the instanton sectors (cf. pg. 37) and the leaves LX;. Therefore, I will associate the k"
instanton sector with the k% branch and the k™ sector of the state space. Every leaf LXj
contains X = X and the preimages of the critical points with respect to u: LX — LX. Due to
(3.3.2), the instanton equation looks the same on all leaves, and T will denote the descending
manifolds corresponding to some preimage x. € Xj of a critical point x. € X by ﬁc,k- The

perturbative state spaces will be associated with these descending manifolds.

The perturbative state spaces follow from the knowledge of the coordinates on the de-
scending manifolds, c.f. section 2.6. Therefore, I consider the instanton equation (3.2.4) for

the gauged Thc in a neighborhood of {0} € X
dixp—(-n—-wx, =0, pe(-1,0), (3.3.5)

wherein the x, are coordinates of LX for an arbitrary k. By means of the Hessian H, =
—(n+ ) one can distinguish the directions of the tangent space along the descending manifold
/Lﬁ)foyk. They belong to positive eigenvalues and are thus the {x,},<o, including the critical
point x9 = 0. The differential forms on f)?o,k are the modes {¥,},<0, and ¢ can be identified
with the usual holomorphic differential form dxy on the zero mode part X ﬁo, ks Xo.k € Xk
of the descending manifold:

Xn=X, , Yp=dx,. (3.3.6)

The momenta, conjugate to x, and y,, n <0 are also coordinates along the descending
manifold. These are the modes ip_,, and in_,, with n =0, and they may be identified with
geometric data according to

ip_p=0, , in_,=1,. (3.3.7)

5Frenkel et al. considered a different operator g with 7 in the exponent, cf. section 3.1 and [FLN08].
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These coordinates satisfy the conditions for a canonical quantization [pj, x;,] = —i0,,—n and
(7, Wm] = =16 p,—m. Consequently, the perturbative state space on ﬁo,k, k =0, now including

the antiholomorphic part, must contain the span
‘]f(;flﬂ = ClxXn, Xn, Wi, Wnlnzo ® ClPn, Pny Tny Tnln<o - Ao, (3.3.8)

where

Do = Ex,, W12 )@Wr1y2--),
Erx,,~ L1 6% 0 )8 W, #)8® (P, pm)0® G, 7im)

n>0,m=0

(3.3.9)

acts like a characteristic function along /EX/()yO and a distribution in the other coordinates.
I have been carful with stating that the state space contains (3.3.8) and not with claiming
that it equals this space. The reason is that I want to relate the perturbative state spaces
of Morse theory to a conformal field theory. If in the spirit of Morse theory the field modes
are interpreted as simple coordinates or differentials, it makes sense to allow for Taylor
expansions and thus for power series. However, the representations of CFTs are usually
spanned by polynomials [KR87]. Yet, if this related CFT will be formulated on CP! this

condition must be relaxed for the zero modes, cf. section 3.5.1.

An alternative way to identify the descending manifolds is to consider the instanton flow
equation (3.2.3) for x(z) in the gauged Thc and after a change to radial coordintates w =

t+ic—expweC”

(az + g) x(z) =0. (3.3.10)

To derive this, it is necessary to remember that A= A,dw+ Agd® and Az = p transforms
like a one form, A; = A@g—‘;’. In particular, if T add the point {0} to C* and consider the
instanton flow equation of the Morse theory to the vacuum configuration {0} € X when z+— 0

(& t— —00), i.e. invoking x(0) =0, the solutions

x(z) = Izl_z“ Z x,2 ", x(0)=0, pe(=1,0) (3.3.11)

n=<0

reproduce the flow lines along the descending manifold and thus along the state space (3.3.8).5
In the equation above I have scaled x with the “homogeneity” |z|?#. It would have been
sufficient to multiply z#, however, the solution x would then have been multi-valued. Single-
valuedness of the fields and of correlation functions is a property demanded by conformal

field theories, and I anticipated this in the solution above.

6The solutions ascending to {0} € Xp o require a different boundary condition: x(co) = 0. Notice further, that closing
C* to the disk C* U {0} = D and demanding x(0) = 0 identifies x € LX with an element in LX.
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3.3.3 The Perturbative State Space on LX ;.

In order to derive the state space on LXp, it is at suggestive to make a coordinate transition
for xe LX

x(0) — ¥(0)=F,e 7 = [x(0)] 7L, (3.3.12)
where I define x(0)™! = Xy IZ‘,’;’:O(—)”xO_ "Ax(0)" by a Taylor expansion and with help of

Ax(0) = XgzoXke
Notice, that the inverse [x(0)]7! is well defined because xp has the meaning as a simple

-iko  For the only mode being inverted one has to assume that xo # 0.

coordinate on CP!.

Under this coordinate transition, the instanton flow equation (3.2.8) is changed to
0:%n—(—n+ Wi, =0, (3.3.13)
or alternatively in radial coordinates z =exp t+io for %(z) to
(az - g) %(2) =0. (3.3.14)

This mirrors, that the action (3.2.10) is not invariant under coordinate changes.” In analogy
to the discussion in the last section, I can now add the point {oo} = {Zy =0} € X0 to C* and
solve the instanton equation with boundary condition %(0) =0 (z — 0 < t — —00), in order
to extract the coordinates along the descending manifold LX 9. The single-valued solution
for X reads

%(2) =1zl Y xpz ", (3.3.15)

n<o0
and similar holds for 7. The other field modes along LX o can now indirectly be obtained as
the modes conjugate to those of ¥ and . Therefore, the perturbative state space on fX/oo,O
equals
FER. o = ClEn, X, Wns Wil neo ® CLPns Pros By Fenln=o* Ao (3.3.16)

with
Ao =Erx_, o1 )Wo1--),
E‘f)i(oo,o = 1_[ 5(2) (Xn, J_Cn)a(Z) (Wnﬂ_ﬂn)éjm(l?m; ﬁm)(s(Z) (.Tl,'m,ﬁ'm).

n=0,m>0

(3.3.17)

This fits with an analysis of the eigenvalues of the Hessian H, = —n+ .

3.4 Relation to Conformal Supersymmetric Ghosts

On a first sight, these state spaces equal particular representations of the conformal super-

symmetric be-system (CSbce) with domain manifold C* and target space C. T will first give

"The composition x — x~!, y— —pu is a symmetry of the action.
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a brief introduction to the CSbc which should clarify this relation. Afterwards, I am going
to explain why I am careful with identifying the CSbc and the Thc, though I will argue
that the perturbative state spaces of the Morse theory underlying the gauged Thc can be
modelled by the CSbec.

I assume that the reader has a basic knowledge of CFTs, otherwise she or he may consult
[Fri85, Gin88, Gab00].

3.4.1 The Conformal Supersymmetric bc-System

As long as it is not logarithmically extended [DF08], the CSbc is assumed to split into
(equivalent) holomorphic and antiholomorphic halves. For the moment I will start with the

holomorphic part.

Representation Theory

t+io

Let the domain manifold be C* with coordinates z=e and the target space be C. The

n

CSbc consists of bosonic fields x(2) = ¥ ez Xn2™ " and p(2) = ¥ ez Prz~""!, whose modes

define a Heisenberg algebra [pp, X;;] = =165, m, and of the superpartners ¥ (z) =Y ez ¥nz™ ",

-n-1

and my =) 7Tz which comprises a Clifford algebra [7,, W] = —i6, —,;-8 There exists

a whole stack of “charged” representations

Xnlp)-=0=vynlp)+, n>-p , pplp)-=0=mylp)+, nzp 3.4.1)

with peZ [FF91, Fri85]. In the case of the fermions, these representation spaces are equiv-

alent because all highest weight states are related by

IPY+ =W_pi1-Wol0)+, p=0,

|p)+ =iP ﬂpﬂp+1"'7[—1|0>+» p<0.

(3.4.2)

This does not hold for the bosonic representation spaces, as I am going to discuss in section
3.6.2. This observation will be of crucial importance for the existence of the Grothendieck-

Cousin operators.

The representation spaces are graded by some bosonic and fermionic U(1) currents j~(z) =
—i:x(2)p(2): and j*(2) = —i:y(2)7(z) :, where normal ordering is defined in the |0). vacuum.?
Under that condition, |p)e has charge —ep, where € = +1 for fermions and -1 for the bosons.
The field modes satisfy [j,;,Xml = =Xpsem> [y, Pm) = Pnems U Wml = ~Wapem, 1, wml =

n+m and the currents comprise Lie Heisenberg algebras [jf, j5,] = €nd, ;. According to

BRemember, that [-,-] denotes the superbracket.
9use:-: as a C-linear mapping such thatA:a+b:=:la+Ab:;,A1eC.
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Feigin and Frenkel [FF91], I will denote the thus graded representation spaces as M¢(p) =
@Dz ME(p);, where [ is the U(1) charge.

To the algebra of the field modes corresponds the operator product algebra of the fields.

It is represented on the p vacua by means of the operator product expansions (OPEs)

i zZ\Pp —i (z\p
x@p@ =— (=), y@rw=—/[=)",
LT LT (3.4.3)
p(2)x() = —— (g)p . @YW = —— (g)p :
z—w\z z—w\z
The Virasoro algebra is represented on these spaces by the energy momentum tensor
T(2) =i :p(2)0,x(2) ~m(2)0,w(2): , T(2)=)Y Tpz "2 (3.4.4)
nez
It can be obtained from the fields
G(z)=i:7m(2)0,x(2): and 2(2)=i:pR)Y(z): (3.4.5)

by T(z) =[2y,%(z)], where 2y = fOQ(z). These fields together with the fermionic U(1) charge
define a twisted A& =2 superconformal algebra [DVV91]. Since the bosonic and fermionic
parts contribute with opposite central charges c¢® = —2¢, the composite system has central

charge zero.

The basic fields have conformal weights

Ar(x)=0=Ar(y) and Ar(p)=1=Ar(m) (3.4.6)
and the commutation relations with the Virasoro generators are [Ty, X;] = —(m + n)Xpin,
[Ty, Pm] = —Mmppym and analogously for the fermions. In particular, one has [j§, To] =0 and

the Hamiltonian respects the grading of the representation spaces M¢(p);.

The Antiholomorphic Part

The antiholomorphic currents necessarily have to be taken into account, when the CSbc gets
related to the Thc. Two reasons are that the Thc has an anomaly free vectorial current and
the central charge is zero. These effects can be achieved for the CSbc, only if the holomorphic

and antiholomorphic parts are both considered.

I define the antiholomorphic currents to be
@ =+:9@07):, j(B)=+i:%22)pQ2:, (3.4.7)

with representation spaces just as before. According to my choice of sign in that definition,

the grading is, however, different, namely M¢(p) = @z M€ ()1, j§ |PYe =€P |P)e. Since

i€(z,2) = j°(2) + j°(2),
v / ] (3.4.8)
j&(z,2) = j°(2) - j°(2)
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are the vectorial and axial currents, respectively, the choice above invokes that the holomor-
phic-antiholomorphic representation spaces M¢(p, p) = @, scz M¢(p);® M€ (p); are graded with
respect to the vectorial currents. At this stage, this choice is a question of convenience,
however, when the CSbhc is logarithmically deformed, the bosonic axial symmetry will be

broken, which T am going to explain in section 4.2.

Concerning the other fields in the antiholomorphic half, they are defined in complete
analogy with the holomorphic scenario. The full Virasoro algebra acts on M¢(p, p) by means
of

T (z,2) =i:0,x(2)p(2) +0:X(2)p(2) :,

T*(2,2) =1:0,¥(2)n(2) + 09 (2)7(2) : 349
under which the state |p, p)e :=|p)e ® |P)e has conformal weight
Are(lp, Pe) = %€[P(P—1)+r3(f)—l)], (3.4.10)
as follows from calculating (Tj + Tg)lp, py. Together with the supercharges
Q= 2)=i:p@YR)+p@Y): and G(z,2)=1i:7m(2)0,x(2)+7(2)0:%(2):, (3.4.11)

the complete CSbc determines a twisted A = (2,2) superconformal algebra.

Ground States

The full, supersymmetric theory has several states with weight zero, i.e. all combinations of
|0)+ and |1)+. However, only one of them, |0,0) :=]0,0)_ ®10,0)., is a conformally invariant

ground state. This can be seen by applying T4;. For instance, the state |1,1), whereby

|Pyl_7> :|pyp>—®|pyﬁ>+y (3.4.12)

has weight zero but is not invariant under T.;. A computation shows that T_1]1,1) =i(x_; po+

Ww_170)|1,1) #0, and similar for the antiholomorphic part.

Correlation Functions and Unitarity
Like the Thc, the CSbc is not unitary. I will now discuss, how that can be understood as an
effect of the anomaly ¢ of the currents

. j€(2)
(z—w)?  (z—w)?

T(2)j¢(w) =
p , q=€. (3.4.13)
(T, jigl = =M+ S+ 1D8n-m
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Similar holds for the antiholomorphic part with q= —e. The appearance of the anomaly for
T, means that j¢(z) is not invariant under SL(2,C)/Z; transformations. Under a holomorphic
transformation z— f(z), the currents acquire an additional term

q0%f

J @) =j(f(2)0.f + Eazf'

(3.4.14)

The quantities that make non-unitarity manifest are the correlation functions. These are
C-bilinear mappings (1q),$(2)|p)) = 4{Pp(2)) p €C, whereby ¢ is an arbitrary combination of
quasi-primary fields and their field modes. This pairing is defined such, that the adjoint
of ¢(z) is obtained by the transformation z~ z~!, which maps an incoming to an outgoing
field.'® Moreover, it shall be SL(2,C) invariant and respect the operator product algebra
(OPA) in the sense that g{b(2)c(w)) )y = ?(i)(l:(w) for appropriate ¢, p.11 What is meant by

“appropriate” will be clarified below.

The adjoint currents, in the sense above, are given by

jET (w) = Z—Zje(z—l) , ]_ET () = 2—2]76(2—1) , (3.4.15)
il = —q6ko—J% i) = -4 60— J-

Due to the different sign of q =€ and § = —¢, the adjoint of the vectorial current remains
anomaly free. If, however, the holomorphic part is considered separately, the anomalies due
to z— z~! have to be compensated, if the correlation functions are supposed to be SL(2,C)

invariant. Therefore, they have to satisfy
(I, j@P@Ipy) = (T @) q), p@)p)). (3.4.16)

In particular, for the zero mode (]'STlél),Im) = ([-q+qllq),1p) 2 (), —plp) = U@, j§Ip),
and the state dual to |p) is given by (|—p+q),:). In the following I will use the notation
(pl=(¢q),"), such that

(qIp) =06g,—p+q- (3.4.17)

The same line of arguments holds if any combination of fields is inserted, and the non-trivial

correlation functions are subject to
Corr(q, p) ={¢(Pp(@)p : J(P)=q+p—q}, (3.4.18)

whereby J(¢) denotes the total charge of that combination. The charge q is called a back-
ground charge, it causes that the dual “bra” and “ket” states determine a pairing but not a

scalar product.

10This conjugation shall not be confused with the definition of the dual states I have used in (2.2.5). The adjoint fields
here are different, for they are not the antiholomorphic counter parts.
Hysually, one also demands that correlation functions be single valued. This can be achieved by including the anti-

holomorphic half, and the way how to do that is restricted by the demand to build a single-valued quantity.

50



3.4.2 |dentifying the State Spaces
The Fock space of the CSbc in the representation on |0,0) equals

J6 =Clxp, xnﬂﬂnﬂ,—”n]nso ®CIpn, Pr>Tn, Tnln<o-10,0), (3.4.19)

which seems to be identical with the perturbative state space (3.3.8) on ﬁoyo, when the field
modes are related and under Ay =10,0). This is further promoted by the observation that
upon canonical quantization, the loop space coordinates and field modes satisfy the same
commutation relations, cf. pg. 44. However, the identification fails to be exact with respect

to the quantum numbers of the fieldmodes and states.

Moreover, according to (3.4.1) and if the CSbc were considered on the chart of CP! in-

cluding the point {oo}, the representation
cyfoo = C[an, -’:Cn»lpnﬂ/:/n]n<0 ® C[ﬁn; ﬁn; ﬁ:n; ﬁ:n]nSO : |1» 1> (3-4-20)

should structurally be identified with the perturbative state space of Morse theory (3.3.16),
putting Jf;ﬂo =~ H and Ao =[1,1). It is, however, not yet clear how to define the CShc
on CP! and, in particular, how to implement chart transitions. This has been tackled by
Malikov, Schechtman and Vaintrob [MSV99], and will be the subject of section 3.5.1. Before
I discuss this topic, I will extend the CSbc by introducing the homogeneities, appropriate
to accomodate the quantum numbers. Moreover, I will briefly discuss the consequences it
would have if one related the CSbc without homogeneity to the ungauged Tbc. This will
touch the question if the Thc can be identified with a CFT.

The CSbc with Homogeneity

For convenience, I will restrict my considerations to the chart around 0 € CP'. The Hamil-
tonian of the Morse description of the topological bc-system (3.2.10) is

H=-i Z U+ n)(Xpp-n+Yni_p+XpP_pn+Ppit_p)

nez

=Y (L + L), Vn=—(u+m)xp0n, Vu=0p)

ne”zZ

(3.4.21)

and due to the shift by p differs from Ty = T + T, + T, +T, . One can overcome this mismatch
of energies by redefining the fields of the CSbc:

x(2) =Y xpz M2l ™, p2) =Y. ppz " M2, (3.4.22)

ne’z. ne”z

and similar for the fermions [FLNO8|. As has been the case for the Morse theory, the fields
are not holomorphic any more. Indeed, the equation of motion for the conformal field x with

homogeneity p equals the instanton equation of Morse theory (0z + %) x(z) =0. Furthermore,
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the boundary condition which selected the descending manifold for Morse theory has been
x(0) =0 and led to the expansion (3.3.11). In case of the CSbec, this boundary condition
is realized by plugging in the representation |0,0) and considering the on-shell expansion of
x(2), i.e.
x(2)10,0)— = |21 " x,27"0,0). (3.4.23)
n=0
The field redefinitions introduce tadpoles due to the inhomogeneity. Calculating ]ﬂ"(w),
one finds that the stress tensor should be corrected

eu(pu+1)

TR T@ -

e o, EBEAT)
T°(z)— T (Z)+7

) (3.4.24)
where T¢, T€¢ are defined as before but with the redefined fields. However, the full stress
tensor has no tadpoles and its zero mode equals the Hamiltonian of the Morse theory, Ty = H.
Indeed, [Ty, xp,] = (—pu—n)xy,, [To, pul = (L —n)p, and similar for the other field modes. The
highest weight states obtain new conformal weights of value Are(|p)e) = %(p—,u)(p—p— 1),
while the central charges for the bosons and the fermions are still the same. The U(1) charges

are also corrected by tadpoles,

fm~fm+%,f@HF@—%, (3.4.25)

while the charge anomalies are not affected. Thus, the states |p)e and |p)e have U(1) charges
of value —e(p—p) and e(p—p), while the charges of the field modes are insensitive to p.

Let me conclude that for the CSbc with homogeneity one may identify
FE = Ty, Do =10,0), (3.4.26)

and the field modes and states have the correct quantum numbers.

3.4.3 What if the Gauge Field is Absent?

Having stated a correspondence between the low energy spectrum of the gauged Morse theory
on the descending manifold LXgo and the CSbc with homogeneity, one might now ask, if
the CSbc with pu =0 were the appropriate theory to describe the Morse theory of the Thc
without gauge field? The Hamiltonians are identical and the field modes have the same
energies. I will now argue, that such a relation fails, because the Thc without gauge field

has more topological states than the ordinary CSbc.

The Topological States of Morse Theory without Homogeneity

Since the Hessian is indefinite on the zero modes, these coordinates are neither transversal

coordinates nor coordinates along the descending manifold. Moreover, they have zero energy
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and in principle may be multiplied to the ground states. Thus, there are not such strong

constraints on the ground states as in the situation with gauge field.

A first consequence is that in the zero modes the ground states are smooth differential
forms on X = CP! with respect to the de Rham differential d, i.e. elements of Q}(X) [FLNOS].
To comprise ground states in the sense of topological states, this space must be further
restricted by the BRST condition QoA¢ =0. In analogy with (2.2.4) and in coordinates of
loop space, the BRST charge for the Morse theory equals

Qo=1) Wnp-n+WnpP-n). (3.4.27)

nez

In particular, its zero mode part can be identified with the usual de Rham derivative d = 8+0
on X. Since CP! has Betti numbers dimHg(X,[Ri) = dichzl(X,[Ri) =1 and dimHé(X,[Ri) =0,
all closed differential forms must have an even form degree, i.e. an even number of wq, .
Consequently, the zero mode part of the topological states comprises even graded differential

forms on X, and there do not exist states with an odd number of ..

In contrast, if g e (-1,0), the zero modes have non-vanishing energy and are not subject to
the restriction via Qg. In particular, this signifies that the theory with gauge field includes
differential forms with odd numbers of g, ¥y.

The Ungauged Morse Theory is not Canonically Related to the CSbc

The representation space for the CShc consists of polynomials in the zero modes and not of
smooth differential forms. However, in my oppinion this is not the main aspect which makes
the difference to the Morse theory with p =0, as claimed by Frenkel et al. in [FLNOS, pg.
32]. As already mentioned on pg. 45, the zero modes will be allowed to appear in power
series, when the CSbc is generalized to the chiral de Rham complex [MSV99]. Rather, the
difference lies in the following observation. The ground states in the Morse type theory do
not necessarily factorize into holomorphic and antiholomorphic (target space) coordinates,
in general there do not exist holomorphic and antiholomorhpic functions & and & such that
f (xO,)_Co)ng 1[_/67 = [h(xo)wé7 ]- [fl()'co)u_/g ]. In ordinary conformal field theories this is, however,
the case because the Virasoro algebra factorizes. Therefore, the vacuum sector of the CShc
is smaller than that of the Thc when u=0.

That the holomorphic and antiholomorphic parts do not factorize is a property which is
also typical for logarithmic conformal field theories. However to the best of my knowledge,
this is still untypical for the ground states. At least it indicates that if the Thc without

gauge field is conformal, it can not be an ordinary conformal field theory.

53



3.5 Conformal Supersymmetric Ghosts on CP!

In the last section I have obtained the perturbative state spaces of the Morse theory un-
derlying the Thbc. The most important observation has been that they can be modelled
by representations of the conformal supersymmetric be-system (CSbce). However, this rela-
tion had the drawback that the CSbc is not globally defined on CP!, such that I could not
reproduce the chart transition of the Morse theory on the level of the CSbc.

I will now clarify how the CSbc can be formulated globally on CP! and introduce the
chiral de Rham complex [MSV99]. This section will conclude the analysis of the perturbative
representation theory of the Morse theory underlying the Thec.

3.5.1 The Chiral de Rham Complex

The chiral de Rham complex generalizes the usual de Rham complex on X to a larger
complex Q:% (X), defined on a sheaf of vertex algebras on X. In the context of the A-
model, it will be the Dolbeault complex with is generalized by the cohomology operator
20=0+D, [0,D] =0, Qé =0. Hereby, d denotes the holomorphic (Dolbeault) differential on
X, and the vertex algebra under consideration is the holomorphic CSbhc with homogeneity, cf.
section 3.4.1. Its supercharge Qg =1iY. ez Wnp-n will play the role of the generalized exterior
differential.

Local Vertex Algebra of the CSbc

Consider the holomorphic CSbc with homogeneity and embedding x: % — Co< X = CP'. For

convenience, I choose the representation to be M¢(0) on [0) = [0); ®|0)_.

The state space can be identified with the polynomials in the modes

e@O:C[xnyWny]nsO®C[pnynn]n<0 (3.5.1)

and one can define a so-called vertex operator, constituting an isomorphy between fields and

states
1
Y(xO) Z) = x(Z) ’ Y(x—ny Z) = ;a;lx(z) , i< 0)
1‘ i (3.5.2)
Y(p-1,2)=p@) , Y(p-na)= EOZP(Z), n<-1,

and similar for the other fields. For any monomial y;---y; which is built by elements y; €

{Xn, Pm>Wn Tm}n<o0,m<o the vertex operator is generalized by means of

Yy =Y(y,2) Y2 :, (3.5.3)
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and this further extends to polynomials. In order to simplify notations, I will equivalently

write Y(y1- Yk, 2) = y1-- yi(2).

Due to their transformation property under £y and their conformal weights, at least for
1 =0, the zero modes can be identified with the geometric data on X, as has already been
done for the Morse theory, cf. (3.3.6) and (3.3.7). On that grounds, it would be nice to
extend the definition of the vertex algebra to power series in the zero modes. I will adopt
the approach of [MSV99, pg. 449f] to the situation u#0. Let f(x¢) be a power series and
define Y (f(xp),z) by the Taylor expansion

o0
1 _ _ _
Y(f(x0),2) = ) Ax(2)"—0/, o, f(lz] x0), Ax(2) =1z Y xpz k. (3.5.4)
n=0 n: k#0
One can write Ax(2)" =Y jez ck(lzl)z_k, wherein ci(|z|) is an infinite sum of monomials of the
kind {lz]"*xn}nzo- On any |v) € Clxp, Pn, Wn, Tl nco ® Cllxo, Woll-10), ck(zl) breaks down to a
finite sum and thus Y (f(xg), z) is a well defined endomorphism on that space. The thus gen-

eralized fields can be multiplied by any polynomial field g(y)(2), y € {Xn, Prm>W¥n> Tm}n=0,m<o0

Y(g(y) f(x0),2) =:Y(g(1),2)Y(f(x0),2): . (3.5.5)

The inverse operation, to obtain a state given a field, works by

FW =Y Dlu=0-10) |,_q» (3.5.6)

where Y(f(y),z) is an arbitrary field. Thus, Y defines an isomorphism between states and
fields.

Local Extension of the de Rham Complex

Since the zero modes can be identified geometric data on X, the supercharge 2, takes the
required form Qy=0+d_+dy, d_:=Y ,cop-nWn and di =Y 50 P-nWn on Fy. Malikov et
al. [MSV99| prove, that there is a quasiisomorphism (Q,d) — (2, 2,), where Q = C[xg, ¥l.
That means, 0 does only act on the subsector of the zero modes and commutes with di
and the cohomologies are the same H(; Q) = H:% (#y). The proof is made by successively
calculating the cohomologies of d; and d- and can be generalized to Q = C[[xg,¥]] and
Py = ClXn, Pr,Wn» Tnln<o ® Cllxg, woll, cf. [MSV99, pg. 448]. Thus, locally, the de Rham

complex generalizes to a complex of vertex algebras under 2.

Chart Transitions

In order to extend the local setting to CP!, it is especially important to give the mapping

Xo,0\ {0} =C* 3 xp— X, 1 a meaning on the level of fields.
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Firstly, on the level of field zero modes pgy acts as a derivative and thus a commutation
with xal can be defined as [po,xgl] = —[pg,xg]xgz. Now, in analogy with (3.5.4), the field

corresponding to x; I can be declared to equal

[e.0]
Y(xg' 2) =1zl xgt Y ()" =P xy " Ax(2)", (3.5.7)
n=0

where I define Y (%y,z) = Y (xg 1 2). For convenience, I will also use the notation Y (%,z) =
%(2) = 12X ez Xnz~". Notice, that in analogy with (3.4.2), the transformed field X satisfies

the equation of motion (0; — %)ic(z) =0.

In the same spirit as above, Malikov et al. generalize chart transitions of the other zero
modes to chart transitions of fields. Let f : xo— ¢, = f(x9) be an invertible coordinate
transformation with f € C[[xp]]. Since they can be related to geometric quantities on X, the

other field zero modes transform according to

0
(px:f(XO)y (pw:a_.;cf(‘)WOy
_ _ _ (3.5.8)
_af 1 aZf 1 af _af 1
TN Vi T T

Here, Malikov et al. assume that the action corresponding to the CSbc equals (3.1.7), where

-1\2 2 £-1
pa is rather pl, = p,+TL wCmy. The transformation of T — (%) %F+ aagz %

po above does not transform homogeneousely. The fields corresponding to the power series

explains why

above are now defined to be

of
$x(2) = f(x0)(2), Py (2) =: a—(Z)u/(Z) 5
o 3.5.9)
()—'6f_1() ()+62f_1ﬂ() (2)m(2): ()—'af_l()()' o
(/)pz—.a(pxzpz 202 axozu/znz., (pnz—.a(bx 2n(z):.

This definition is not obtained by simply using the vertex operator on the field modes above.
The reason is twofold. Firstly, Y is not defined on my and pg since they are not part of Z.

Secondly, the definition is such that the transformed fields are again primary fields.

In a next step, that I will not reproduce, the authors verify that the transformed fields
preserve the commutation rules (3.4.3). The ambitioned reader may check this for the

following example, making use of the relation
of ~ r—1
fR@pw) ==~ (w) x(2)pw) (3.5.10)
0

and similar for p(z)f(x)(w). In terms of the field modes, this amounts to [py, f(x0)] =
[P0, X0]0x, f (X0)-
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Example in Logarithmic Coordinates A particular example that T will make use of in
appendix C is the CSbc in logarithmic coordinates xg— expxy. The thus transformed fields

are

Pr(z) =679, Pp(2) =179 [p(2) -y (27 (2)] :,

3.5.11
Py (2) =: ex(Z)w(z) Lo Pr(2) = e *@r(z):. ( )

A coordinate transition ¢, — ¢! changes the sign of the fields {x, p,, 7} above.

The Vertex Operator Algebra in the New Fields The vertex algebra in terms of the
fields in (3.5.9) is obtained in analogy to (3.5.2) and (3.5.3). The question is indeed not how
the fields are constituted, but how to get back the field modes in the new coordinates. This
is obtained by (3.5.6). In particular, for a monomial y,ll1 ---y,IYN, where y& is a field mode

among %, one can specify the corresponding states in the new coordinates according to

Gy oy 10y = [ Pys (Dny - [Pyy (D) -10), (3.5.12)

where [¢y(2)], denotes the field mode (¢)), in the expansion ¢ (z) = |z|2H Znez(gby)nz_”_A.

Important examples are the composite fields 2(z), T(z), 9 (z) and j*(z). Take, for instance,
$a(2) =1i:¢,(2)dy(z) :, according to the discussion above this field is obtained as ¢g(2z) =
Y(ipp_, Py, 2). Is it possible to further express the field modes (state) in terms of the original
ones and thereby obtain a formulation in terms of the original fields? In the new coordinates,
the state corresponding to the supercharge reads

(o s o of _
pa0 =130+ S v @), 010 =

() [20)

(5] (37 St )l 56

where I noted down all modes that potentially contribute non-trivially. To normal order the

) Wo-10),

expression above, I commute them to the right such that

i(Pp)-1(dy)o-10) = ip_1yo-10) +
02 af! °flo 0
(o0 ) v o). (6)
axo 0 a(px -1 a(bx 0xO -1 axo 0
Here, I used (3.5.10) in order to calculate the commutator [pg, Xo]. Now, the fact that (%) =

(), e (%2, (&), -- o
and one ends up with

-10).

( 66 Jg) ) (%{: )0 allows to simplify the expression above,

-1

¢o(z)=2(2)+0, (3.5.13)

0, (108 2| 40 @)

Oy
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In particular, since the “correction” to 2 is only a derivative in z, the zero mode is invariant
under a coordinate change, i.e. 2y = ¢g,, the cohomology charge of the chiral de Rham
system must already globally defined on X.

This observation holds for the zero modes of the fermionic current, and also the stress

tensor T(z) is globally defined on X, as follows from:

0
¢j+(z)=j+(z)+azlog(%) ,  yg(z) =9 (2) (3.5.14)
0

and T(z) =[2y,%(z)]. Consequently, the j0+ operator, that measures the fermionic charge,
and the BRST operator are well defined on the chiral de Rham complex and j; determines
a grading of the sheaf. The bosonic U(1) current does not transform in a particular nice way,

as the reader might want to check. In logarithmic coordinates one gets

bj-(2)=—j (@) ~ip(z), (with ¢y(2) =e*(2)). (3.5.15)

The CSbc on CP!

The outcome of the former sections is that I can locally write down the CSbc and apply
chart transitions. In order to formulate the theory globally on CP!, the local vertex algebras
have to be glued together.
Let
Fo:=Cllxo, woll ® Clxp, Wl n<o ® Clpn, Tnln<o-10). (3.5.16)

together with Y be the CSbc on Cy and
900 = C[[-;COJTJO]] ®C[3~Cn; 1pn]n<0 ®C[ﬁn»ﬁ:n]n<0 : |6> (3-5-17)

with ¥ another CSbc on Cs. To both, I can apply xo — xal = X, Xo— 5661 = xp and formulate
the theories on the overlap C*. By means of (3.5.9), Y — ¥ and vice versa, and the vertex

algebras can be glued together

F* =ClIxy ", w0l ® ClXp, Wil n<o ® ClPn, Tl n<o ® -10) 55.18)

= Cl[% ", 0] ® ClZn, Pnln<o ® ClPn, Anln<o ®-10) .
This heuristically concludes the interpretation of the CSbc as a sheaf on CP!.!2

Sheaves with Support In order to discuss the chiral de Rham complex associated to the

topological A-model it is necessary to extend the analysis to sections with support in closed

12For a rigorous prove that the CSbc on CP! and more general manifolds X constitutes a sheaf, cf. [MSV99].
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or locally closed subsets.'? In particular, the perturbative state space on fX/oo,O are modeled
by
Frao =ClZn, Wnlnco ® ClPn, Fnln=o- 1), (3.5.19)

which is the holomorphic part of (3.4.20), and not by F,.While the fermionic part of that
space can be identified with the one in %, because all these representations are isomorphic
(3.4.2), this is not true for the bosons.

I will not attempt to enlarge the analysis of the Chiral de Rham complex to (locally)
closed subsets. T will rather assume that this can be done and that %, and L are part of

a sequence similar to (2.5.3) or (2.6.2).

3.6 Beyond the Perturbative Representations

In the last sections, I have described the perturbative state spaces of the A-model on target
space X = CP'. While the ground states are already globally and nonperturbatively defined
on X, the exited states may be sensitive to nonperturbative corrections which destroy their
local character, 2.5. One distinguished place where these corrections appear is the Hamilto-
nian, and the main task in the following sections will be to determine the analogues of the
Grothendieck-Cousin operators of chapter 2. Throughout my thesis, I will denote these anal-
ogous operators as “Grothendieck-Cousin operators”, though the term may not be correct

for the infinite dimensional setting.

In order to determine the Grothendieck-Cousin operators, I will bosonize the CSbc in the
spirit of Feigin and Frenkel [FF90, FF91] and of Friedan, Martinec and Shenker [FMSS86,
Fri85]. Thereby, I obtain the GCOs in a specific formulation of the vertex algebra of the
CSbe. As already mentioned, this description differs from the one used by Frenkel et al.
[FLNO8], and exctends the analysis of [FF90, FF91, FMS86, Frig85].

Moreover, I will discuss the interpretation of the GCOs as cohomology operators. In the
bosonized description of the vertex algebras defined by (3.5.16) and (3.5.19), it will become
transparent that the GCOs are the bosonic analogues of the screening operator for the purely
fermionic bc-system, cf. [FFH*02].

3.6.1 Existence of Grothendieck-Cousin Operators

The Grothendieck-Cousin operators § are mappings between the perturbative state spaces
Holcon SUbject to the condition (2.6.1):

36 A0, — FN

o ok © LX0/0on < LX 00/0,k - (3.6.1)

137 locally closed set is a set which is an intersection of an open with a closed set.
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Therefore, one has to clarify which descending manifolds satisfy LXg/eo,n < fX/oo/O,k- I owe
Edward Frenkel a nice proof of the fact that f)“(oo,n < f)i(oyn and ﬁoyn_'_] < ﬁoo,n-

The proof starts with reconsidering the situation of Morse theory on CP! in section 2.4.
The target manifold is defined as CP! := (C2\{0})/C*, where C?\{0} 3 (f,8) ~A(f,8), LeC* are
the homogeneous coordinates.' In terms of homogeneous coordinates, when identifying the
vectors (0,1) with {0} € CP! and (1,0) with {oo} € CIPl, one can describe now X, as the C* orbit
of (f,1) and X as the C* orbit of (1,0). These reproduce the inhomogeneous coordinates for
Xp by z=f €C, whereas for X it is @ =0 and X, = {oo}. One can now proof that X, < Xp
by letting f#0 and (f,1) ~ (1, f~9 "= (1,0).

The space LCP! can analogously be defined by (C[[z]] x C[[z]] — {0})/C*[[z]] with vectors
Cllz]]l x Cl[z]] > (f(2),g(2)) ~ A(2)(f(2),g(2)), A€ C*[[z]]. Here, C[[z]] denotes the space of

power series in z with f(2) =Y ;<0 fnz™", where z € D, and similar holds for g(z).

In the situation under discussion p € (—1,0), and the descending manifolds f)fo/oo,n cor-
respond to solutions of the instanton equation with boundary condition x(0) =0. As dis-
cussed in 3.4.2, in a neighborhood of {0} € CP! they read x(z) = |22 Y. 120 X_n2" and LXg
has inhomogeneous coordinates {x;};<¢o. In a neighborhood around {oo} one has solutions

%(2) = |zI*# Y =1 X_»z" and inhomogeneous coordinates {%,},<_1 on fX/oo,k: cf. section 3.3.3.

The descending manifold ﬁgyk can now be described as the orbit of (f(z), g(z)) under
C*[[z]], whereby

f2) € Z¥z7FCllzll, g(2) = A +0@)zF|zI* € zF|zIMCl[z]].
Analogously, f)?oo,k is obtained as the orbit of (f(z), g(2)) with
gz) € Z°NzIF-Cllzll, f(2)=(1+0(2)z"zI™* € zF|zI7 Cllz]],

and g is proportional to an additional factor of z in order to yield the correct expansion
index in %(z) = |z|?* Y n=1X-n2". Moreover, I have assumed that z # 0 and scaled the power
series by zF in order to distinguish the index by H)(X,Z). Without loss of generality I set
1 =0 and prove below that [J f)?oo,k <ﬁ0,k and [ ﬁo’k_'.l <ﬁoo,k.

U Let (f(2),g(2) = zk(fk+0(z),1+0(z)) be an element of ﬁo,k with fi # 0, then
(f(2),8(2) ~ 2K+ 0(2), £ + 0(2)) ¥ 2*(1 + 0(2), zh(2)) with h € C[[z]], and this is an
element of fX/oo,k-

U Let (f(2),g(2) = zZFa + O(z),gk+1z+0(z2)) be in € f)?oo,k with gg+1 # 0, then
(f(2),g(2) ~ Zk(g,:il +0(2),z+0(z%) Bke1 700 zZ¥*1(h(2),1+ O(2)), where h(z) € C[[z]], and this

is an element of ﬁo,k+1.

1411 the former sections I have considered the descending manifolds Xg = C and Xoo = {oo} always in inhomogeneous

coordinates.
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To conclude, in the situation that X = CP! and the gauge field is determined by u € (~1,0),

there exist two sorts of Grothendieck-Cousin operators

. in in
61 . ‘;foo,n_)'jfo,n’

. in in
8y + HED, — A

0,n+1

(3.6.2)

3.6.2 Chiral Bosonization

The method of chiral bosonization goes back to Friedan, Martinec and Shenker [FMS86] and
starts with the holomorphic (or antiholomorphic) part of the CSbc. In the following, T will
generalize this approach to the CSbc with homogeneity u.

In order to treat the bosons and fermions in one and the same formalism, I rescale the
fields of the CSbc in 3.4.1

€=—: x—b, ip—c,
(3.6.3)
€=+: y—b", ir—c",
whereby the index € discriminates bosons, € = —, from fermions, € = +. The basic idea of chiral

bosonization is to express the Heisenberg and Clifford algebras and their representations in

terms of Heisenberg Lie algebras «/€(h) :
Us,Jo,l =€ndp_m (3.6.4)

with representation

Jyv5,=héno-vy, n=0, heC, (3.6.5)

and equally for the antiholomorphic part. I define the fields corresponding to J¢ as
- eH _
]ft(Z) =J(2) + ~ J(2)] (w) = o)

o

L@=re-7, FeI@= gz rm.

z ®)?2

»

(3.6.6)

The different signs for the holomorphic and antiholomorphic fields will be understandable
when it comes to match the Heisenberg Lie algebras with the CSbc. The action of the

Virasoro algebra on these representations is given by
1 - 1. -
Te(z) =e:5 J5(2* + a0, T,(2): , Tr(2) =e: 5 J5(2) + @002T3,(2) - . (3.6.7)
Taking the OPE between Ty and ]ft yields

—Zao ]E(z)

D@ = o w2’

(3.6.8)
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1
2
obtain the same background charges as for the CSbc, cf. (3.4.13). Notice, that now

and similar for the antiholomorphic situation. Thus, I set ag = —%6, Qo = 5€, in order to

€ pu+1)
2 zz

- - - - 1
Ty:(2) = SUS (@ +ed: ) @) - £ (0 + 5E (“Z: )

Tre(2) = < (6 (2)? — €0, J¢(2)) + EJE (2) +
2 z (3.6.9)

The central charge for the holomorphic as well as the antiholomorphic part is given by cje =
(1-3¢) and v‘;l Q= VZ ®V% is a highest weight vector with conformal weight A, e+ T (v; }.l) =
%e[h(h +e)+hh—¢€)+ 2u(u+ D]+ puth - h) and charges h+ep, h- EUL.

Bosonization means to define an action of the Clifford and Heisenberg algebras on these

spaces. Therefore, one introduces the operators

VE(r, 2) = exp (r¢°(2)) := e %0220 Y VE(r)z "
e (3.6.10)
e 0w e C\{0)

n

55 -
— eer(/)o |Z|2ryzer](§ e—erZ,Ko Tz

and similar operators for the antiholomorphic field, whereby the bosonic scalar fields are

z €
¢°(2) =,ulog2+ef Jj(@)dw = ulog|zl? +e(<p‘8+]glogz— > ]—"z_") ,
70 ™ (3.6.11)

z 7€
¢°(z) = ,ulogz+€f J(@)dd = —ulog|zl* +¢€ ((ﬁg +J5logz— > ]—"2_”)
nz0 1
with [, J5] = —€80 = (o, J5]. The vertex algebra is defined by taking derivatives and
products of the operators V¢, just as for the CSbc. The OPE of two fields V¢ in the vacuum

€ -
VhIS

VE(r, 2)VE(s,0) = (z— o) 5|22 Mo H 2wl VE(r 2) VE(s,0) ¢,

_ _ i i (3.6.12)
VE(r,2)VE(s,@) = (- @) |2l 2 || 2 H 2 M Ve (r, 2) Ve (s,@) :
the charge of V¢ can be read off from
I (@ VE(r,w) = ﬁve(r, w)+ ;awve(r, w) (3.6.13)

to be of the value r for the holomorphic and also for the antiholomorphic field. Taking the

OPE with the energy momentum tensors, their conformal weights read
€ 1 VE(r 7 1
Aq, (Vo (1,2)) = 56 r(r+e), ATF (Vi (r,2) = 56 r(r—e. (3.6.14)
In particular, the operator

e o (W)=, (h+T), V=S, (3.6.15)
2 2
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and hence also V¢(r, z), are mappings between different representations of the Heisenberg Lie

algebra. In addition, the shift operator correctly changes the conformal weight of the highest

€

weight vector v}

1
[(Tye)o, %15 = (€ r(r+e)+erh)-e PV, (3.6.16)

and similar for the antiholomorphic operator. Therefore, introducing the operators V¢
makes an extension of the Heisenberg Lie modules to the modules @7 dfle(h+ ) and
Biez d_;e(fl+ 1), necessary, whereby [ distinguishes sectors of different U(1) dzlarges, mea-
sured by ]S and ]8.

Bosonizing Fermions

In the fermionic case, the action of the Clifford algebra of the bc-system is generated by

C+(Z) = V+(+,Z), 5+(2) = V+(_y2))
- _ (3.6.17)
b*(2)=V"(-2), b"(2=V (+2),

and @ ez /7, (—p+1) = M* (p) and @z 7 (p+1) = M*(p) [FFI1].

Indeed, the fields above have the correct OPEs (3.4.3) including the homogeneity and,
when I further identify

. B+ itesy B3+ s
Jf@+==21l2), jf@-==]!(2),

z H z “H (3.6.18)
T'@=Tp@,  T*@=T.0),

also the correct charges and conformal weights. In particular, the vertex operators above
act on v p,p like the original fields b* and ¢* on |p, p)+. The field modes can be determined

by the Fourier expansions, for instance for V* (-, z),

Vi-2v_p= |z|2#zPe=Po > Vy(=)z vy
n<0
=lzl7 Y e MV, ()2,
m<-p

(3.6.19)

in analogy with b*(2)|p)+ = Izl_zl‘zns_p b}z " p)+, and similar holds for the other field
mode V*(+,z). The field modes inherit the correct commutation relations from the OPEs.

Moreover,

S\ oAt
P, Py +=V_, 5 (3.6.20)

and these states have the same conformal weight and axial and vectorial charges.
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Bosonizing Bosons

In the bosonic case [FF91, FF90] one has to include an auxiliary fermionic bc-system because
of the wrong central charge. Thus, I introduce fermionic scalars {(z), &(2) and fermionic fields
of weight one 7(z), 7(z) (all these fields do not have a homogeneity). The currents and the

stress tensor are defined as before, see section 3.4.1.

The operators

c (@=V (+,2)en(2), c @)=V (202,

- _ (3.6.21)
b~ (2) =V " (-,2)®0,¢(z) , b (A)=V (+,2)®0z{(2)

have the correct OPE to define an action of the Heisenberg algebra on a subspace of

Np,p)= | 1 (p+D LA (l)) ® (@d’_‘l (—p+5) mi*;( Ok (3.6.22)
lez *? =2 seZ 2 %2

where I implicitly assumed that the auxiliary part may be bosonized as before. The adequate

subspace will be determined in the next section. For convenience, whenever I consider the

(anti)holomorphic part alone, I will use the notation (N(p)) N(p) in the following. The

space N(p) collects all possible Verma modules by the fields above and by their derivatives

represented on the states ..., V;+1| = Dne, v;IO)ng, V;—1|1>nf»--- .

To prove that the spaces above respect the OPE of the bosonic ghosts, on has to take into
account that the bosonized fields are tensored s.t., ¢™(2)b™ (w) = V‘(+,z)dzf(z)V_(—,w)ﬂ(w).
Moreover, since the auxiliary part and the fields V™ have the same U(1) charges in (3.6.21),
the vertex algebra is graded with the same charges for the né-system and the vertex operators

as above, which explains the summation indices. For the same reason I may identify
— “~~_ _1_ . T— = uN;,___l-__ T =
F@-F = F@= @), e+t = F@=(h@je). 6623

These currents measure the charge of the representation spaces. In section 4.2 I will argue,
that the coupling of the auxiliary current with J, causes that the bosons do not introduce
an additional anomaly into the theory. Similarly, the stress tensor of the bc-system acts like

a sum of the stress tensors of the parts of the bosonized system

T (2)=Tj(2) —:0:8(2n2):, T (B)=Tj(2) —:0:(2)7(2):. (3.6.24)

The fields in (3.6.21) have the correct conformal weights and charges under these identifi-
cations and they comprise the relations (3.4.1) on V-5 ®10,0)pe. However, only if the bosonic
axial symmetry was broken, one can determine states that have the same bosonic vectorial
charge as the corresponding states of the non bosonized CSbc. Since the axial symmetry will

be broken due to the GCOs, I will now assume this to be true. Under these circumstances
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and for p = p, the state |p, p)- has the same quantum numbers as Vp-p® 10,0 ¢ - Therefore,
I will identify

PP =V, _, 810,00 (3.6.25)

Notice, that only the diagonal (p = p) representation spaces N(p, p) will be relevant for an
analysis of the A-model.

Grading of N(p,p) The spaces N(p,p) are graded by the zero modes of

ING2) = 5 {Up (@ = jne(@)] = Uy (2) = ue @) | (3.6.26)

which further respect the grading by conformal weight and the fermion number. The current
Jn generates a third symmetry besides the vectorial and axial symmetries, which is due
to the extension of the bosons by the auxiliary fermions. Due to the combination of the
currents J, and jpe, Jn is anomaly free. Still, also this symmetry will be broken due to
the Grothendieck-Cousin operators, which ensures that Jj does not enter the theory as an

additional symmetry.

Possible Vacuum Representations The condition of zero conformal weight is satisfied
by the states that consist of all possible combinations of v;’qls, Dye with p,s, € {0,1} and
q € {0,—1}. Here is the collection of such states in the representation N(1,1), that will become

important in the following sections

V1,010, Dye
V1,-110,0)5¢ Vooll, Dpe - (3.6.27)
Vo111, 0)pe

The states in the middle have zero vectorial charge and comprise a doublet within N(1,1).
The state on the top has a vectorial charge of value 1, and the lowest state has charge —1.
However, only the state v 10,0}y is an element of the representation space of the bosonized
bosons, as I will explain below. The state V5,0|1'1>17€ will later obtain the interpretation as

the logarithmic partner of V6,0|0'0>n€ € N(0,0).

A further remark has to be made. If Jy gets broken as a symmetry of the theory, there
is no reason why V5,0|0*0>n5 should be in a different multiplet than V5,0|1’1>n5- Indeed,
only then, those two states can be logarithmic partners, because there is no way to further
decompose the two-dimensional representation of the Hamiltonian on these states by means

of an additional symmetry.

Restriction of N(p,p) The representation space N(p, p) above is not yet the correct repre-
sentation of the Heisenberg algebra defined by b~ and ¢~. Due to the absence of the zero
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modes & and &, the vertex algebras must be contained in the intersection of the kernels of

1o and 7o and the space N(p, p) is too large.

In addition, from Feigin’s and Frenkel’s analysis in [FF91| it follows that the correct
representation space for the holomorphic part (without loss of generality) coincides with the
kernel of no: The kernel of ng is obtained by applying (jye)n, nn with n€Z and ¢,, n#0
to 10),¢. Consequently, the representation space of the bosonized bosons equals the kernel
of no if 7, 0,¢ and jye can be expressed in terms of the fields b, ¢ and V. This is possible
by means of Jne(2) = —0,¢(2), 0;¢(2) = %Ozb_(z) ® V7 (+,2) and n(z) =0,¢c (2)® V™ (—,z). The

same holds for the antiholomorphic fields.

Therefore, M~ (p,p) = N(p, p), whereby the overline denotes the intersection of the equi-
valence classes N(p) and N (p) of field operators modulo 19 and g, respectively.

This result yields a nice heuristic interpretation why the instanton effects are supposed
to be found within the bosonic part of the CSbc and not within the fermionic. Due to the
presence of ¢ and by in the field operator algebra, the representations of the fermionic
ghosts on v and v, are isomorphic. For the fermions, there exists only one fundamental
vacuum, namely v{ since it has the highest symmetry.'”® On the other hand, the bosonic
representations on vy ®0),¢ and v| ®[0),¢ are different, for &, is absent as a dynamical
degree of freedom and 7 is effectively set to zero in the operator algebra, as argued above.
The bosonic ghosts can thus be considered to comprise dynamical degrees of freedom in the
presence of different background vacua. For these reasons, the charged representations of
the bosons may serve as a source for instantons, to be introduced additionally to the bosonic
ghosts, interpolating between those backgrounds. These explanations will obtain an exact

mathematical sense in terms of the Grothendieck-Cousin operators.

Summary of the Main Facta

In order to describe the perturbative state spaces of the gauged topological A-model in
terms of bosonized bosons, it is sufficient to restrict the representation space to the diagonal
situation p=p. As aresult, M~ (p, p) = N(p, p) and the highest weight vector is now uniquely
determined by |p, p) =vp,—p ®10,0)¢. In particular, only the state V1_,—1|0» 0) in the diamond
(3.6.27) is an element of N(,1).

The perturbative state spaces for the A-model on CP! can now be identified with the

bosonized representation spaces

o = Fo® Fo = (SEMOLENCIEINI0R

. o ) _ (3.6.28)

N =T ® T = [Pt (@] (SN ®N(1, 1),
2

00,0 —
5,8 2

151 will discuss the representation theory of the conformal ghost systems more detailed in section 8.3.
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where T used that all fermionic representation spaces are equivalent (c.f. (3.4.2)), and conse-
quently @/, (s+p) =B, (s).
2 2

The stress tensor and fundamental fields are derived above. The supercharge, must also be

composed by bosonic and fermionic fields. An immediate calculation proves that the fields

2(2) =V -2V (+,28n(), 2=V (+2eV (-2 i) (3.6.29)
have the correct OPEs with the bosonized fields to be identified with the supercharge
Q(z,2) = 2(2) + 2(2).

I will now approach the question what operators may serve to define the Grothendieck-

Cousin operators.

3.6.3 The GCOs and the Cohomology Interpretation
By (3.6.15), the nilpotent operator c; = e is a cohomology operator

¢+
o () S A (—p+ D) — e, (3.6.30)
2 2

cf. [FFH*02|. However, since it connects isomorphic representation spaces, this operator can
not be the GCO mapping between %, and FL. As just explained, the difference between

the perturbative state spaces must be rooted in the bosonic sector.

The extension of N(p, p) to N(p,p) by means of efo ¢, and e~ % 50 permits a nontrivial
action of g and 7g. Thereby, one obtains a complex for the bosonic sector in analogy to the
fermionic one, above. The réle of ¢y for the purely fermionic bc-system is now played by the
nilpotent operator nofjo : N(p,p) = N(p—1,p—1). Therefore [FF91], it can be interpreted

as a cohomology operator for the complex

= NP B Np-1,p-1) = -, (3.6.31)
whose grading is measured by Jn, since [Jy o+ Jno,N0f0] = —Noflo- Notice, that in principle I

could define different complexes using other combinations of 1y and 7y acting on N(p, p), for
instance ng +1o. However, for the representation spaces of the gauged A-model the relation

p = p has necessarilty to be satisfied and this restricts the choice to ngfjp up to a prefactor.

To specify the cohomology of ngfg, I will now determine the image of this operator.
Consider the complement N(p,p)/N(p,p) of N(p,p) in N(p,p). Since N(p,p) denotes the
intersection of the kernels of ng and 7y considered independently, this space must not be
equal to the kernel of nofy. Indeed, it is just a subspace. For instance, N(1,1) does not
include the states Vio® 10, 1)¢ and Va,—1|1’0>17rf which are sent to zero by nof)g. I will call the
expression

_ - + 7— 7+ -
Ni(p,p) = I@Z .d% ) mfnf'_% ) ®a¢_% (s) ®a¢n€’% (s) Voot —pil

10,70=0

[1,1) (3.6.32)
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the “logarithmic extension” of N(p—1,p—1). With this definition I can now split

N(p,p) = Nr(p,p)® N(p,p) ® R(p, p),

— _ — (3.6.33)
R(p,p) = (N(p) o Nu(p) & (Nu(p) 8 N(p))

wherein Nz (p) and Ny (p) signify the holomorphic respectively antiholomorphic half of (3.6.32).

One can now extract the image of 17, namely
imyp,5,(NL(p, p) =N(p-1,p-1). (3.6.34)
Therefore, the p™ cohomology class of nof is
P _
HY . =R(p,p). (3.6.35)

This result differs from the situation where only the holomorphic or antiholomorphic parts
are considered. In the case when 1g is taken for the cohomology operator, the cohomology

of this operator is trivial.

As a consequence of the following discussion, the local cohomology spaces in the analogue

of the Grothendieck-Cousin complex will, however, not be the cohomology spaces of 1¢fjg.

The First GCO 6§,

In section 2.6.2, I made two formal assumptions on the Grothendieck-Cousin operators.
The first was, that it is a mapping between the perturbative spaces of states if the descen-
ding manifolds have relative codimension one. The second was the observation, that the
Grothendieck-Cousin operator is basically acting on the “dual part” of the eigenstates of the
naive Hamiltonian. In the Morse theory on CP! this was obtained by extending its spectrum
by the missing states with the same quantum numbers. I will make use of this in order to
propose that N(1,1) is the appropriate extension, cf. 34

0— A0 ) - A =M (0,008 N(1,1) == Ay — 0. (3.6.36)

00,0

I will restrict my consideration to the holomorphic part. The representation N(1) is generated
by the action of A =1{n_,e %, é_ e, JZntn<o on vy ®[0)pe. The spectrum can in analogy
with the fermionic be-system [FFH*02] be framed by the extremal states

Vo e 5 oV110)ne

Valnex oV2l=Din
Vaa3ME X e oV3l=2h
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The horizontal axis is scaled by the U(1) charge of J~(z), while the vertical axis distinguishes
the conformal weights. The states denoted by x are not contained in N(l), and I will now
explain that they appear due to an extension by the “dual” states. Generalizing the recipe
of section 2.6.2, those have to be chosen such that they have the same quantum numbers as

have the extremal states in N(1).

An extremal state Vi lShye € N(p), r,s € Z must be subject to the condition r+s = p.
Moreover, it has conformal weight —%r(r— 1)+ %S(S— 1). The conformal weight is invariant
under r— —r+1 and/or s— —s+1, while the grading is in general not invariant under those
transformations. The cases in which the grading is preserved are values of r and s that solve
r+s=1. Therefore, dual states in that sense only exist in the representation N(1). T will
argue below, that this already covers the situation of the gauged A-model. Thus, for p=1
the dual states are exactly those, which extend N(1) to N(1).

The cohomology operator 1y for (3.6.31) has now the desired properties to be identified
with g;. Thus, up to a prefactor, which is chosen to fit with the results of the following
chapter 4, I set

01=2noflpoe, @1 =2n0f0, (3.6.37)

whereby e denotes the extension N(1,1) — N(1,1).

The Second GCO 6,

The second GCO already follows from the discussion above. This can be seen by a method
that I owe Edward Frenkel.

In section 2.5, I promoted the idea to interpret the GCOs as operators that mimic the
instantons. Consequently, an observer on the chart f)?o,o and calculating with states Jﬁoir})
gets some insight into the perturbative state spaces around {oo} € X. Because there are no

anti-instantons, no states of A, will appear to an observer on LX 000-16

In order to “see” the instantons that flow from {0} to {oo}, the observer has to move to
the other hemisphere and consider the states ]ﬁfol,o, where the instantons introduce states
of Jfé‘j, cf. (3.6.2). This movement should not change the physics, and thus is invoked by
the composite mapping x — X, p— —y, which leaves the action (3.2.10) invariant. Also the

flow equation remains structurally the same and turns into (0 + ’—;)X =0.

There is an additional effect on the state spaces which can not be seen from the action.
Considering x — x~!, g — —p and the instanton flow equations, one could conclude that
FY — Fooy Fo— F|, where the states are defined as in equations (3.5.16) and (3.5.19), re-

spectively (in adequate coordinates). However, one has to take care of the fact that the state

16These would be mimicked by the presence of & o0&o in the Hamiltonian.
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spaces are weighted by exp{[p ¥~ " (WK) + [rem, x0T~ " (@x)}, cf. eqns. (3.3.1) and (3.3.2).
Intuitively, a coordinate transformation has to move the disk D to the other hemisphere,
which can be done by wrapping it once around CP!'. Therefore, x — x~!, u— —u should
be accompanied by the transformation [, ¥*(wk) — [p7* k) + [ ¥* (wk), and this adds to

n+1  The theory is then rather invariant under x — X, pg— —pu and an

-1 17

the operator g" — g

additional multiplication of the transformed spaces of in-states with g

The second GCO can now be derived from §;. The reason is that if the theory is invariant
under x — %, p— —u and a multiplication of the states with g~!, the globally defined
Hamiltonian must also be invariant under this mapping. Therefore, under this transition,
01— 0> such that

b2 =2 figfooe, gz =2MoMo. (3.6.38)

In that way, d2 is acting on q_ljfénl = Jﬁoi‘}). Because the GCOs are structurally the same,

it is sufficient to restrict my investigations to 87, which I will do in the rest of my thesis.

3.6.4 Conclusion

In (3.6.28) I have summarized the perturbative state spaces that will serve as the CFT model
for the representations of the Thc with gauge field. The “ground” states of the A-model are
identified with

Do = Vio®Vool0,0pe, Aoo = vy ®VI_110,0) (3.6.39)

The Grothendieck-Cousin operators appear in an extension of the perturbative state spaces

that is analoguousely to that of pg. 34. If have noted down that extension for §; in (3.6.36).

The Grothendieck-Cousin operators add to the Hamiltonian, that has an action on the

nonperturbative representations according to pg. 30 :

H=H+g1+g, = Ty=To+To+g1+92. (3.6.40)

With these data, I conclude my analysis of the low-energy, nonperturbative Morse theory
behind the gauged A-model. In the following chapter, I will extend the focus on the quantum
mechanical operators to the fields. I will prove that a specific logarithmic transformation of
the CSbc on CP! adds the Grothendieck-Cousin operators to the Hamiltonian and further
deforms the stress tensor and fields. The following analysis again shifts the attention back
from Morse theory [FLN06, FLN08], to field theory [VF09].

17Because of (2.2.9), the operators are not affected by this transformation of g.
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The A-Model beyond Topology 4

In the last chapter I have considered the Morse theory underlying the A-model in the large
volume limit (Thc). Using the recipe of chapter 2, I have derived its nonperturbative state
spaces and the Grothendieck-Cousin operators mapping between them. The representation

spaces have been modelled by a conformal supersymmetric be-system (CSbc).

One of the main proposals of Frenkel et al. was that, if there corresponds a conformal
field theory to the “gauged” Tbc, beyond the topological sector it must be a logarithmic
conformal field theory [FLN06, FLNO08]. However, they did not push forward their proposal
and introduce the logarithmic CFT. This will be the subject in the following and conclude
part one of my thesis. The chapter is grounded on and also extends my publication with M.
Flohr, [VF09].

Firstly, I will accommodate a method by Fjelstad et al. [FFH*02|, which allows for a
logarithmic extension of conformal field theories. The extension will be such that the Virasoro
algebra as well as supersymmetry are preserved and the Grothendieck-Cousin operators of
section 4.2 are added to the Hamiltonian. The logarithmic deformation affects not only the
Hamiltonian but also the operator product algebra (OPA) of the fields and the other modes
of the stress tensor. I will discuss those effects and conclude the chapter with a proof that
the logarithmic extension implies the extension of the perturbative state spaces Jféf}) and

Jf;ﬂo as described in section 3.6.3.

4.1 The Method of Logarithmic Deformation

Fjelstad et al. invented a constructive method to deform CFTs to logarithmic CFTs [FFH*02].
The main idea is to enlarge the representation space of any chiral (antichiral) CFT systema-
tically, by introducing additional field modes and tensoring their representation space to
the one of the CFT. Thereby, the stress tensor gains an additional term which acts on the
tensored vector space such that some of the Virasoro generators yield higher-dimensional,

non-reducible representations.

4.1.1 Extension of the Fields

Let € denote some chiral algebra of conformal fields and & the corresponding representation
space with conformally invariant highest weight vector |0)g. I will further require that there
exists a fermionic field E(z) € € of weight one such that Epl0)g =0 and E(2)E(w) = 0. Fjelstad
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et al. deform the fields f(z) € € by introducing an odd graded vector space £ with operators
€ and p and a vector |0) z € &, such that [¢,p] =14 and pl0).» =0 [FFH*02]. In order to
have an isomorphism between fields and states, they define a new field e(z)
z z E
e(z)=1g ®e—f Ewdwely, f E(w)dw=Ey log z— ) _ 7"2_” 4.1.1)
n#0

corresponding to |0) g ®€|0) 5. This “extension field” determines a deformation map on f €%

f(z2)— ]_”(z) = :exp{—pe(0)}: f(2), 4.1.2)

which extends the algebra of field modes by the additional zero modes € and p. The action
of e on a field F(z) = f(z)® g, 0 € End(%), is defined by means of the OPE

_|_ _ l [E;f]n+1
e(z)F(w) =|-IE, fl1logw z)+,§1 ni(z—w)” ®0, (4.1.3)

wherein [E, f], denotes the contribution with pole of order n in the OPE of E with f, i.e.
[E, f1n(w)
E(2)f(w) =Y 20 7=

o - In particular, the energy momentum tensor gets deformed to

T(z) — I(z):T(z)+§E(z). (4.1.4)

In my opinion, further extensions of the fields generating the symmetries of the theory
should be made, which Fjelstad et al. did not take into account. Namely, for e to make sense
as a field, € should have the same quantum numbers as E, which imposes further conditions
on € and p. Suppose, for instance, that there exists a current j according to which E has

some charge gg. Only if this current is extended by an additional zero mode
j(z)Hj(z)®1]+1g®qE§, 4.1.5)

the field e has a well defined charge. From the commutation relation of € with p then follows
that p must have charge —gg. These additional extensions are not an integral part in the
deformation by the extension field e, however, in the case of the CSbc this will be the case,

cf. section 4.2.

4.1.2 Extension of the Representation Theory

Due to the additional term, the Virasoro algebra has two-dimensional representations on
certain composite fields
Wi(z)=—: e(z)[(z) . (4.1.6)

Their OPE with the stress tensor yields'

oo [E, flm-1 Ar(A¥r+[E fli 0,¥
T(2) f(w)—’%3 PRI Y S

(4.1.7)

11 thank J. Fuchs who pointed out to me that I have to use the definition of normal ordering and contraction for
interacting fields, (i.e. fields that have not just one singular term proportional to the identity in the OPE): a(z) : bc:
_ d¢ F,Fp
@) =§, 5=z (a@bQ)c(w) + (=) b)a(z)c(w)) , cf. [DFMS97].
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which means for the state space that the ground state has now a logarithmic partner
Eje-|0)z ®10) 7, due to [e,p] = 1% . Here, Ej is defined by [Ep, Ej] = 1.

Indeed, this kind of logarithmic deformation causes an extension of the state spaces. Let
10) :=10)g ®10) » and denote by &’ the Fock representation of € on that vector. Obviously
F =~Z'. However, by the construction above, there is a new state €|0) corresponding to the
extension field e, and a representation " of € thereon. The extended representation space
can be identified with & := '@ %" and the deformed fields mix &’ and &”. In section 4.2.5,
the space &' will take the role of the “dual part” that extends the perturbative state space
of the Morse theory behind the A-model.

4.1.3 The Fermionic bc-System

As a crucial example for the A-model, I will now consider the auxiliary né-system of section
3.6.2 and apply to it the method of Fjelstad et al. [FFH*02].

The fields constituting the vertex algebra are deformed to

§z) —  $(@=¢(@)+p logz,
n(2) = nz)=n(z),

. (4.1.8)
Tye(z) =  T,:(2)=Ty(2)+p n(zx)z"",
@~ lnf(z) = jne(2)+pz~! = p n(2)logz,
and extended by the new field
z
e(z) =e—f nN(w)dw. (4.1.9)

The additional field modes p and € satisfy [€,p] = 1% and p|0) » =0 for some |0) » € A,
whereby £ is an odd graded Vector space. They extend the state space of the original
fermionic bc-system M;E(O) — M;E(O) ® X, 0)pe — |0y ®10) 7. The CFT defined by the

fields above exhibits logarithms in the OPE and a non-degenerate stress tensor

s(2)e(w) =log(z—w),
0-¥e@+1 0 Ve (@) (4.1.10)

(z - w)? z—w

T (¥ (w) =

wherein W¢(z) = —: e(z)é (2) : is the logarithmic partner of the identity operator on M;f 0)ex .

In particular, the extra term in the Hamiltonian
Zfls‘o: The g+ P Mo (4.1.11)

looks similar to the GCOs if p was adjusted to be 7y and the né-system was identified with
the auxiliary fermions of section 3.6.2. Before I adapt the deformation to this situation in

the next section, a comment on the the OPE of { with e is indispensable.
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Due to the logarithm, the correlator of ¢ with 1 yields a multi-valued function. This can
be resolved by including the antiholomorphic sector and restricting the variable z, usually
considered to be independent from z, to be the complex conjugate. Thus, the observation
in the last chapter, that the GCOs mix up the holomorphic and antiholomorphic parts of
the CSbc, fits with a typical situation in a CFT which exhibits logarithms in OPEs. The
deformed fermionic bc-system canonically demands that the holomorphic and antiholomor-
phic parts are considered together. Still, for convenience I will often restrict my discussion
to the holomorphic “half”.

Moreover, the logarithm in the OPE of e with ¢ causes that Mobius covariance is broken.
Indeed, under (z,w) — et(z,w), A #0, I find that s(2)e(w) — log(e’l(z—w)) # {(2)e(w). This
signifies that e can not enter the conformal field theory as an additional dynamical field. It

just serves to deform the field algebra and to extend the representation spaces.

4.2 Introducing the GCOs

I will now discuss, how the bosons of the CSbc can be logarithmically extended in a way, such
that the Hamiltonian and extended representation spaces cover the situation of the Morse
theory behind the A-model, cf. chapter 3. From section 3.6.2 it is already clear that the
deformation has to be applied to the bosons of the CSbc. Above, I have further motivated

that the auxiliary fermions will be the main characters.

In the following section, I will propose a specific logarithmic extension e and analyze its
effects on the field algebra. The Hamiltonian will turn out nicely, and I will fill in the
missing argument why the logarithmic deformation breaks the bosonic axial symmetry and

the symmetry generated by Jy, cf. (3.6.26).

Section 4.2.5 concludes this analysis. Therein, I will explain that the field e does not only
deform the field algebra but also extends the representation space in a way, such that the

results of the last chapter are reproduced.

4.2.1 Extension of the Fields

In order to introduce the Grothendieck-Cousin operator g;, I fix the representation of the
bosonic bc-system to be 'N(1,1). The second GCO can be obtained after a chart transition

of the CSbc to the other hemisphere and just in the same manner as described below.
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The GCOs are mixing holomorphic and anti-holomorphic (target-space) coordinates. There-
fore, I set & = Z\_/I:]r'f 0), X = M%(O) and define the additional fields

e(z) =e‘¢_’6 (1Mn+f ®50—f n(w)dw@ll\;p{),

, ’ (4.2.1)

é(z) =eP (50 ® Ly —lagy, ® f f](d))dd)) )
Ul S

By this means, the holomorphic part is extended by the antiholomorphic part and vice
versa. Having introduced the field modes e® and e % does not only extend N(1,1) in the
desired way, but it is also necessary because it is now a bosonic system to which I apply the

deformation.

Defining the field transformations as
f(z.2)~ f(z,2) =:exp [—e(O) P 7pg— e Pinq- é(())] : f(2,2), 4.2.2)
the stress tensor of the né-system is deformed to
T,(2,2) = (Tng(z) +% n(z)ﬁo) . (Tng(Z) +% 1701'7(2)) . (4.2.3)
The deformation further implies

Tpe,* inf n Anént Tpe , T a0+ 1015 (4.2.4)

on the field modes and leads to the desired result (3.6.40). As I have already mentioned,
not only the Hamiltonian but also the other modes of the Virasoro generator are deformed.
This effect is invisible in the Morse theory description, and I will therefore discuss some
consequences at the end of this chapter. In the following, I will refer to the deformation

terms in the stress tensor as “Grothendieck-Cousin fields”, which I will denote by

1 1
g1(2) = ;17(2)7_70, 01(2) = Enoﬁ(z). (4.2.5)

In addition, the transformation affects the bosonic fields in N(1,1)

b (@) =V (-2 8(0£()-M0z"), b @)=V (+2®(3:(2)+10z7") 126
c(@=V(+2en, E@=V(-2en?
and . i
T (@=T" (2 +g(2), T @=T"@+u2,
I (@)= g2 ~logz @0, ], (2) = ue(2) +10gZ Mol (2), (4.2.7)
17 (z,2)=] (2,2, Q(z,2) =Q(z,2),

whereas the supercharge Q(z,z) = 2(z) +Q_(2), Q(z)=V*(-,2)®n(z) V™ (+,2) is not deformed,
cf. eqn. (3.6.29). Hence, the topological sector of the theory is insensible to this procedure.
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In addition, the zero mode of the vectorial current Q; = (]_+f_)+(1 : +i E) is not corrected,
which means that it still measures the same quantum numbers as the undeformed one.
This is not only an incidental remark, there is another reason why the vectorial current is
preferential. As explained before, for e and é to have well defined charges, the holomorphic
and antiholomorphic currents have to be generalized. Consider the affected holomorphic
auxiliary current jps. The charge of &p is measured by Jne and yields the same value as the
charge of n under j,¢;. Therefore, it must be completed by the antiholomorphic current in
such a way, that the total auxiliary current is vectorial. Since the auxiliary current is coupled
to J~ via (3.6.23), this is inherited by J~. This explains my claim that for the particular
deformation above, the extension of the symmetry generating fields and the extension by

e, e is the same.

In order to further specify my comments on the symmetries of the deformed theory, I
will now discuss how the logarithmic deformation indeed breaks all symmetries whose gene-
rators contain the axial current of the auxiliary né-system. Moreover, I will consider if

supersymmetry and the Virasoro algebra are affected.

4.2.2 Notes on the Symmetries

The axial symmetry of the auxiliary system is broken by the presence of the deformation

term in the Hamiltonian. To see this, I calculate the commutator

fdz [1]01_70,11]5(2)] ifdz [1]01_70,17”6(2)] = —-nofo £NoTo- (4.2.8)

Therefore, only the zero mode of the vectorial current commutes with the deformed Hamilto-
nian, whereas this fails for the axial symmetry. This concludes the proof that the currents Jy
of eqn. (3.6.26) and J~—=J~ of eqn. (3.6.23) do not comprise symmetries of the logarithmically
deformed CSbc.

On the other hand, this is not true for supersymmetry and conformal symmetry. The
reason is that besides in the expression L)E’ only derivatives of the field ¢ enter the extended
field algebra. Since all deformation terms are proportional to zero modes of 1n(z) and 7(2),
the logarithmic extension does not spoil the commutation relations and, hence, preserve

supersymmetry and the Virasoro algebra.

The absence of ¢ has two further consequences that I will now discuss.

4.2.3 Exceptional Logarithmic Partners

A first consequence is that the field Wj-(z) = —: e(2)b™ (z) : has no logarithmic partner,2

e PV (- w) ATAC)

@Y @) = — =3 P

(4.2.9)

2Due to the anomaly of the holomorphic current Jné» (4.1.7) does not apply and one has to derive the OPE by hand.
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On the other hand, ¥ ine (2) = —:e(2) jpe(2) s, and other combinations : ¢p(2)¥ ine (2):, ¢ a field

in the CSbc, have logarithmic partners. In particular,

—e(w) Yj(+dye(w) 0,¥;, ()

I(@¥, ()= (4.2.10)

(z—w)3 (z—w)? zZ—w
This turns the logarithmically deformed CSbc into an exceptional case among logarithmic
conformal field theories. Namely, its U(1) current breaks the SL(2,C) symmetry and therefore,
the logarithmically deformed CSbc is an example for an LCFT whose basic Jordan block is
not a primary field [Flo03, pg. 4516].

4.2.4 On the Necessity to Deform the Fermions

In section 4.1 I have considered the né-system in its own right and argued that the extension
field e should not be part of the dynamical fields because it breaks Md&bius covariance. Since
¢ is not a field in the vertex algebra of the bosonized bosons, I can not exclude e and & from
the dynamical fields by this argument. However, if I treated them as additional dynamical
fields in the CSbc, I would expect that T also have to logarithmically deform the fermionic
sector, in order to supply the extension fields with their supersymmetric partners. I denote
the fermions as in the last chapter by b* and ¢*, an extension as described in section 4.1.3
can be performed
_ z z
e+(z)=bg—f ctw)dow, é+(2)=bg—f ¢t @w)do,
(4.2.11)
ft(z,2) Hf(z, z)=:exp[-e"(0)co—cge"(0)]: f"(z,2)
and the zero modes of the bosonic and fermionic extension fields are related by supersym-
metry
(2,eP&] =e % ~bl, [2e P]=ehé. 4.2.12)

However, eqn. (4.1.10) forbids that e* and é* can be considered as dynamical fields in the
fermionic sector. Therefore, it is again impossible to interpret e and & as dynamical fields in
the CSbec.

Since supersymmetry was already preserved without deforming the fermions, it is not
demandatory that the fermions are logarithmically extended. On the other hand, to the best
of my knowledge there is nothing to be said against it, and I will argue below that, if the
reader wishes to logarithmically extend the fermions, this will not affect the representation
theory of the CSbc and thus the results of chapter 3.

4.2.5 Extension of the State Space

Although ¢é(2), &(2) are not part of the dynamical fields, the zero modes & and &, are

introduced by the extension fields e, € and thus extend the state space. I will now prove
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that the extension is as in equations (2.6.2) and (3.6.36):
N(1,1) 25 N, 1) 2 N©,0). (4.2.13)

Firstly, I will restrict my considerations to the auxiliary né-system in order to illustrate two
aspects. As stated above, this will show that a logarithmic deformation of the fermions in
the CSbc does not interfere with the extension of the representation spaces. Furthermore,
the essential role of the coupling between the bosonized bosons and the auxiliary fermions
will become evident. Secondly, I will explain how the logarithmic extension indeed leads to
(4.2.13). By an explicit calculation of the action of the Grothendieck-Cousin fields on that
extended space, I will substantiate the impact of the additional field modes that are invisible

in the Morse theory description.

According to the deformation rule (4.2.2), the fields e, é and their composite eé extend the
ground state |0,0),¢ of the n¢-system by the new states §ol0,0), &olo, 0)p¢ and 5050|0,0)n5.

This extends the representation space as described in section 4.1,

Pt Do (r)—|PAL(Dot™ (s 1)) ® (@,Qir(r) ool (m+1)|. (4.2.14)
L, 2 p s 2 ~2 rm 2 2
In particular, the logarithmic partners are modelled on the representation space with highest
weight state §0€0|0,o>,,§,

In50|111>7]f:0'|1»1>_|010>nf» (4-2-15)

while Info is diagonal on the other representations. Therefore, one would naively assume

that the logarithmic extension of the original state space equals M;EL (LD =@ (L7 (I-1)®
_ 2

o (s+1)), in analogy with the bosonized bosons eqn. (3.6.32). This state space is, however,

2 - -
isomorphic to the one defined by the partner fields, @; o/ *, (1) ® o/ (s), because &y and &g
are part of the field algebra. This is the reason, why the nffsystemzalone is not capable of

explaining the different nature of Jf(i)f}) and Jfgg’o.

Fortunately, the extension of the state space of the full supersymmetric bc-system is more
complicated because the algebra of the auxiliary fermionic field does not factorize. The new

highest weight states, introduced by e and é, are rather

e & Vo1 @110}
e % Vio1®10,0)pe =1 vi®10,pe (4.2.16)
ePo P& Voo ® 11 Dne

and the extension fields fill in the missing states in the diamond (3.6.27). The algebra of
field modes

P e, (Dol (e’ (s 4.2.17)
I,SEZ z nf’_i _E nf’i T]O f]():O

78



is now represented on those states, and
N(1, 1) [N(l)éBNL(l)]®[N(1)€BNL(1)] =N(1,1), (4.2.18)

wherein the logarithmic extension Ny(1,1) of N(0,0) appears, cf. eqn. (3.6.32).

The Action of the Grothendieck-Cousin Operator

I can now substantiate the action of Inf on N;(1,1)® R(1,1), cf. section 3.6.2. Therefore, I

consider the states

X = 0@ My 0k Ek Vie ja1 00,
0]

X1 = O3 )N Nrbky "'fkj 'Vi—j|1>n§r (4.2.19)

r<--<ri<0, k<--<k<0, I=i-j,

wherein 0 (J7) is a monomial in JZ,, n>0. They are elements of the Virasoro module with
fixed charge l+%, measured by 35.3 I will denote these modules by N(l)l and Np(1);, respec-
tively, which immediately generalizes to the compositions N(l,l)l’l-, NL(LUM‘ and R(l,l)lj
by means of

= Pe g, s 5eq0,1). (4.2.20)

The action of Tye = Tye,, +Mnflo on such states is as follows.

For the zero mode, which is the Grothendieck-Cousin operator, I obtain

1,1 1,1 (N}
Toeo Ko = Exxey =N Aoy 4.2.21)
where T used A := (—)"+’T+j+f_'6s,oo and A := (—)"+’T+j+f_'6§,oo. The deformed Hamiltonian is

non-diagonal only on the states in Ni(1,1), as I have already discussed in section 3.6.3.

For the other modes of the stress tensor with n#0, I find

LD LD v LD
e, ng Tye , xﬁs + (=) Ay, xﬁo , (4.2.22)

and an ; is in general not diagonal if the states are in R(1,1) ® N7(1,1).

For all modes of the Virasoro field it is true that the ground state vi _,10,0),; is not sensible
for the logarithmic extension, as it is annihilated by all modes of the Grothendieck-Cousin
field.

3The value of % is due to the fact that I consider solely the holomorphic part.
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4.2.6 Conclusion

I have logarithmically deformed the CSbc in such a way that it includes the situation of the
Morse theory behind the A-model in the large volume limit. Thereby, also the fields and
their OPA was deformed, and T have discussed the effects on the symmetries of the CSbhc.
In particular, the stress tensor obtained improvement terms

I(2,2) =T(2,2) + 91(2,2) + 92(2, 2),

- - (4.2.23)

01(2,2) =n(2)N0 +n07M(2), @g2(z,2) =1(=2)7o + o7 (2),
which T called Grothendieck-Cousin fields. Above, I included the second of these fields that
is determined by a chart transition. The Grothendieck-Cousin operators break the bosonic
axial symmetry, as well as the symmetry Jy which distinguishes the chains in the complex
of extended bosonic representation spaces, cf. section 3.6.3. For this reason, the states in
Ni(1,1) and the corresponding fields can be interpreted as the logarithmic partners of the
states and fields in the representation N(0,0).
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Summary and Conclusion 5

In my first part of this thesis I have investigated the geometric significance of the improve-
ment terms in the Hamiltonian of the logarithmic conformal bc-system with target X = CP!.
Taking the perspective of its underlying Morse theory on loop space, I may now conclude

the following.

The zero modes of the improvement terms are the infinite dimensional analogues of local
cohomology operators (Grothendieck-Cousin operators — GCOs) in a complex of extended
representation spaces of the Hamiltonian, whereby extension means that the representa-
tion spaces are extended by their missing dual part in the sense discussed in section 2.6.2.
Therefore, the logarithmic conformal bc-system on CP! is a field theoretic application of the
Grothendieck-Cousin complex as considered by G. Kempf [Kem78], an interpretation already
discussed by Frenkel, Losev and Nekrasov in [FLNO08|.

The same authors interpreted the extension as the transition from perturbative to non-
perturbative state spaces, by which the zero modes of the improvement terms gain a second
interpretation. They mimic the instantons becoming visible in the dynamical sector of the
theory. This interpretation is in addition promoted by the fact that the GCOs are mappings
in a specific direction, which is determined by a filtration of the local representation spaces.

This direction conforms with the direction into which the instantons flow with growing time.

I will now briefly summarize the steps I have taken.

Morse Theory and Induced Representations In chapter 2, I have considered Morse
theory on a compact Kéhler manifold X, cf. [FLNO0G6|. It was necessary to constrain X in order
to guarantee that a non-empty topological sector would exist. After several transformations
which left the topological sector invariant, I could massage the action into a first order form,
such that the path integral would manifestly localize on the instantons. In particular, this

spoiled CPT invariance and the transformed theory lost its former unitarity.

The speciality of this Morse theory has been that the metric was scaled with some positive,
real-valued parameter A, and that, hence, it got possible to move in the moduli space of the
theory. Two phases of Morse theory have been of special importance, the phase when A # oo
and the large volume limit A — oco. For finite A, the representation spaces of the Hamiltonian
are isomorphic to the representation spaces of the unitary theory. In the large volume limit
it is not possible to make such a statement in general, besides for the topological sector,

which is insensitive to the value of A.
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The most important impact of the scaled metric was that the perturbative spectrum of the
Hamiltonian included apart from the topological further dynamical states. For the situation
that the target manifold is X = CP!, these perturbative state spaces survived the large volume
limit and became induced representations of the symmetry generated by the gradient field

of the Morse function.

The perturbative representation spaces were defined locally on the so-called descending
manifolds. These are the submanifolds into which X is decomposed by means of the gradient
vector field. Frenkel et al. claimed that if the local representation spaces were extended as
distributions to X, they did comprise the nonperturbative low energy spectrum of the theory,
cf. [FLNO8]. I have extended the perturbative spectrum in a manner which differs from that
used by Frenkel et al. [FLN06]. The Hamiltonian turned out to be no longer diagonal
on the thus obtained representation spaces. I did then decompose it into a trivial part
and an operator which is responsible for that effect. The thus obtained operator entang-
led the extended representation spaces and, by comparison, could be identified with the
local cohomology operator (GCO) of a particular Grothendieck-Cousin complex [Kem78|.
Therefore, the GCO makes it possible to take an insight into the structure of the induced
representations of the symmetry generated by the gradient field of the Morse function. In
particular, this is an insight into the excited spectrum of the Morse theory and thus an effect

beyond the topological sector.

Due to the GCO the Hamiltonian is indecomposable on certain dynamical states and also
mixes the holomorphic and antiholomorphic target space coordinates. These aspects are
typical for logarithmic conformal field theories and it is, hence, reasonable to generalize this

concept to two-dimensional field theories, [FLNOS].

A Field Theory Application In chapter 3 I have considered the A-model with domain
manifold £ =R x S! and target space X = CP!. The target space was again supplemented
with a metric scaled by A, cf. [FLNO08|. Since many physicists and mathematicians assume
that there exists a point in the moduli space of this theory where it is conformal [FL07,
MSV99, DVVO1], it was a good starting point for generalizing the discussion of the last
chapter to a field theory and, additionally, for analyzing the meaning of the Grothendieck-

Cousin operators in a conformal field theory.

As in the situation of Morse theory, I transformed the A-model into a first order shape
by breaking CPT invariance and taking the large volume limit. Under this treatment, the
A-model took the form of a supersymmetric be-system which T called the “topological bc-
system” (Thc). Structurally, it looks like the conformal supersymmetric be-system (CShe),

and I assumed that the representation theory for both systems is the same.

Having integrated out the dependence of S!, the Thc turns into an infinite sum of super

quantum mechanical theories on loop space LX, which look similar to the Morse theory
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considered before. In order to attain the full analogy, it was necessary to add another vector
field to the gradient vector field, which ensured that the critical manifold reduced to singular
points. Like Frenkel, Losev and Nekrasov [FLNOS8|, I have called this procedure as “gauging”
and denoted the thus obtained Thc as the gauged Thc. Moreover, in order to obtain a Morse
function for the gradient vector field it was necessary to lift the theory from loop space to

its universal cover.

The Morse function thus obtained was multi-valued on loop space. Therefore, the preim-
ages of LX in its universal cover fanned out into infinitely many leaves, distinguished by
homology classes in H(X,Z). In the same manner, the perturbative state spaces and the
descending manifolds were distinguished. However, the state spaces were isomorphic, and I

could restrict my consideration to one of those sectors.

Analyzing the Hessian of the Morse function, I could determine the coordinates of the
descending manifolds in this sector. Because of the analogy to the Morse theory of chapter
2, I then could note down the perturbative representation spaces which localize on these
submanifolds. It turned out that they could be modeled by representation spaces of the
CShec.

In order to define the CSbc on X = CP! it was necessary to explain how chart transitions
work, and I introduced the chiral de Rham complex [MSV99] to close this gap.

To determine the Grothendieck-Cousin operators, I had to find the local representation
spaces between which such operators intermediate. As it turned out, there exist two such
operators which, however, are related by a chart transition composed with a redefinition
of the additional vector field I had used to reduce the critical manifold to isolated points.

Therefore, it was sufficient to discuss only one Grothendieck-Cousin operator.

In order to obtain this GCO, I assumed that I may substitute the CSbc for the A-model.
Having adjusted and generalized the method of chiral bosonization [FMS86], I could derive
a cohomology operator in a long exact sequence of particular state spaces. The perturbative
state spaces of the Tbhc are part of this sequence, and I could extend them in such a way that
the GCOs have been extracted as the cohomology operators in the short exact sequences
of perturbative state spaces. Thise GCOs deform the Hamiltonian of the CSbc and are

non-diagonalizable on a subspace of dynamical state spaces.

In the last chapter I discussed the question which deformation of the CSbc corresponds
to the deformation of the Hamiltonian by the Grothendieck-Cousin operator [VF09].

Logarithmic Deformation of the Chiral de Rham Complex The GCOs made it neces-
sary to reconsider the chiral de Rham complex. I looked for a logarithmic extension of this

theory which would produce the GCOs within the Hamiltonian and extend the state spaces
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in the appropriate way. For this purpose, I have successfully accommodated the method of
logarithmic deformation invented by Fjelstad et al. [FFHT02].

Since it must be applied to the bosonic subsector of the CSbc, this raised the question
if, due to supersymmetry, it was not necessary to further deform the fermionic part. I have
argued that supersymmetry did not demand this. Nevertheless, if the fermionic part is in

addition logarithmically deformed, this does not affect the representation theory of the CSbc.

Moreover, the logarithmic deformation did neither destroy the Virasoro algebra nor super-
symmetry. Yet, it spoiled all anomalous symmetries by which the Thc exceeded the A-model
with finite values of A. I consider this as an additional confirmation that the logarithmic
deformation of the chiral de Rham complex might be necessary, if the dynamical sector of

the Thbc is taken into account.

Another interesting aspect has been that the basic Jordan blocks in the doublets of loga-
rithmic partners are always comprised by fields which are not primary. In this respect, the

theory is exceptional among logarithmic conformal field theories [Flo03].
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Conformal Fermionic Ghosts on the
Torus






Motivation 6

In the last part of my thesis I have investigated the conformal supersymmetric bc-system
with target manifold CP'. Under the assumptions that this theory describes the topological
A-model in the large volume limit and that it has a particular nonperturbative spectrum on
the descending manifolds of its underlying Morse theory, it became necessary to logarith-
mically deform this CFT. The improvement terms in the stress tensor thereby inherited an

interpretation as local cohomology operators and of instanton contributions.

This time I will consider a different geometric setting, which again gives rise to a log-
arithmic extension, now of the fermionic conformal bc-system.! In this setting, the CFT
has target space C, whereas the domain manifold is an algebraic surface T™™ with global
monodromy group Z, as a branched covering of CP!. This situation has been discussed by
V. Knizhnik [Kni87] for the non-logarithmic situation, and extended to the triplet model, in
case that T™" is the torus, by M. Flohr [Flo98]|. The triplet model [Kau95, GK96, Gab03], is
not the same LCFT as the one I have discussed in the context of the A-model. It includes the
situation of the last chapter but also exceeds it, in particular it contains additional twisted

representations which mimic the branch points.

In the following chapters I will discuss two topics related with this setting. Firstly, T will
argue from a purely geometric point of view that a logarithmic extension of the bc-system
on the torus is unavoidable. Secondly, since the torus is the spectral curve of pure gauge,
SU(2) Seiberg-Witten (SW) theory [SW94]|, I will reduce the prepotential and the spectral
curve of this theory to quantities in the triplet model [VF07].

In chapter 7 I will introduce the bc-system on the algebraic surfaces T along the lines
of [Kni87]. The monodromy group will be responsible for additional, twisted representations

which mimic the branch points.

In the following chapter 8, T will restrict my considerations to the case that the algebraic
surface is a torus. Since the twisted representations mimic the branch points, there will exist
a geometric argument why the bc-system must be logarithmic. This works by relating the
Legendre family, which is a one parameter family of tori, to the nullvector condition of the
twist fields. The minimal logarithmic CFT containing these representations is the triplet

model which I will briefly introduce.

The last chapter 9 will be on pure gauge, SU(2) Seiberg-Witten theory. After some intro-

ductionary remarks, I will explain how its spectral curve can be expressed in terms of triplet

ISince I will only treat this theory in the following, I will often refer to it as “the bc-system’”.
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characters and how the prepotential can be obtained as a function of the torus modulus.
Since this modulus equals the ratio of the four-point functions of the twist fields it is pos-
sible to determine the prepotential, and therefore this particular Seiberg-Witten theory, by

means of quantities of the triplet model.
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Fermionic Ghosts on Algebraic Curves 7

In this chapter I will summarize how Knizhnik formulates the conformal fermionic bc-system
on a specific class of algebraic surfaces which are branched coverings of CP!, [Kni87]. Their
monodromy group acts on the fields which thereby fall into irreducible representations. The
highest weight vectors of those representations can again be related with conformal (twist)
fields that simulate the effects of the branch points.

7.1 The Algebraic Surfaces

Every compact Riemannian surface can be obtained from a zero set of some polynomial in
two variables by an inclusion of finitely many points [Fre09]. Therefore, I will trade such
algebraic surfaces for compact Riemannian surfaces in the following. Particularly, I am
interested in the class of polynomials

nm

T = {(y,x) eCx (CP'\{e;) P, 0)=y"—[[(x—en) = 0} , n,meN, (7.1.1)
i=1

with e; # ej, Vi # j, and in those describing elliptic curves, subject to the restriction n =2
and m =2. I am particularly interested in the elliptic curves, because they become tori when
compactified and the spectral curve of pure gauge Seiberg-Witten theory with SU(2) gauge

group is a torus.

The projection p: (y,x) — x, yields a covering (locally biholomorphic mapping) of X =
CP'\{e;} by T™™, and the Monodromy group has a global representation on differential
forms on X due to the global Z,, symmetry. In an open neighborhood U(e) of a branch point
e € X, there exists an open set V(e) c p_l(U (e)) and biholomorphic mappings ¢y and (/3U,
such that the following diagram commutes, [Fre09]

™M . ye) Y opr g
pl lp | . (7.1.2)

s Ul Y oprogn

Hereby, D* denotes the unit disk without the point e, which I set to 0 without loss of
generality. Therefore, in a neighborhood of a branch point e, the covering looks like p(z) =
e+ z" with inverse

p 2 =(z-e)l'". (7.1.3)

By (z—e)"/" I denote the whole stack of the n solutions to this equation, and which I label by
I mod n, [ € N. Whenever I want to distinguish a special root, I will denote it by (z—e)””lvl.
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When compactifying the algebraic curve, the mapping ¢y is analytically extended to the
symbol p‘l(e) by setting gbv(p_l(e)) =0. For this reason, though it is not quite correct, I
will call (V(e),¢y) a chart around p_l(e).

In the following I will describe how Knizhnik introduces the fermionic bc-system on the
leaves of the covering and how the branch points introduce a stack of local representations

of the theory on additional background fields.

7.2 The Fermionic bc-System on 1™

Knizhnik defines a fermionic bc-system on the algebraic surface T™™. It consists of a scalar
fields b and a one-form ¢ which he considers in the representation on |0), cf. section 3.4.1.
These fields describe the purely holomorphic (and purely antiholomorphic) differential forms

I Due to the local biholomorphism, one can consider these fields on the

on the surface.
different sheets I and in local coordinates z on X. For instance b”(z) = bo p~!|y,(2), where
V; is an open subset of the I™ sheet, not including a branch point.2 Similar holds for the
one-form c¢. These fields have an action which due to the local biholomorphisms can be

formulated on =

s :_[dzz D 20:6?(2). 7.2.1)
>

Accordingly, the total state space is a tensor product of n equivalent highest weight states,

in particular

n-1
10y = ) 10);. (7.2.2)
=0

On every sheet, the stress tensor is defined as in section 3.4.1 and the same holds for the
fields. In particular, their operator product expansion yields
51,1

b ()¢ V() = —=. (7.2.3)
Z—Z

7.2.1 Around the Branch Points

Since analytic transitions between all sheets are possible in a chart around a branch point,
this situation is more delicate. To visualize this, I depicted the Riemannian surface of /z,

below.

11 will only consider fermionic fields b and ¢ in this part of my thesis. Therefore, I will omit the index + used in section
3.4.1.
2In a chart I will allow myself the abuse of notation to equivalently denote by z a local coordinate on X or its preimage

onT™™M,
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Let U(e) be a neighborhood of a branch point e. The
different paths between the sheets, along which func-
tions on T™™ can be analytically continued, can be
classified by means of the monodromy group related

to e. It is defined as follows.

Let y e m1(U(e), z9) be a closed path starting and ending at zy and enclosing at most the
branch point e, and denote by ¥; the (unique) lift of y starting on the Ih gheet at qi,
p(q1) = z9.> The monodromy group permutes the elements of the fiber p~'(z0) = {qo,-**, Gn_1}
and is defined by the action

Ky qi=71(1). (7.2.4)

2mik

It is isomorphic to the group of roots defined by g;— qq+k) mod n=€¢ " q1, k€ Z,, and thus
to Z,.

The monodromy group induces a representation on the fields by means of

Ay - b(g) = b(y;(1)), (7.2.5)

and similar for ¢. In a chart without branch point, the points g; can again be projected on
¥ such that this relation holds for fields b and ¢?.

Since T™™ is globally Z, symmetric, the representation of the monodromy group can
be diagonalized simultaneously for every branch point. This is obtained by the Fourier

transformations

n—-1

bi(2) = Y err1-n(DbP(2)
=0 . en(D=eM k=0, n-1. (7.2.6)

n-1
k(@ =Y ees1-nDc? @
=0

The monodromy group now introduces the boundary conditions

k+1-n

f: b@—e P h2), e — e o), (7.2.7)

and the n different Fourier transformations distinguish n different irreducible representations
of this group. The domain of by and ¢ is p~1(U) = Lefo,...n-1; Vi, where U does not contain a
branch point. While before it was reasonable to separate the fields together with the different
sheets, the idea to entangle them in one equation is natural in a neighborhood of a branch
point. The most important consequence is that the currents can now be defined also in a

neighborhood of a branch point and as the single-valued fields

Jk(@) == :br(2ck(2): . (7.2.8)

3Composing such loops defined with respect to different branch points, one can generate all possible loops enclo-
sing one or several branch points. Therefore, and due to the global Z,, symmetry, it is sufficient that I restrict my

discussion to one branch point.

91



Operator Product Expansions Since the sheets of the algebraic surface are overlapping
in a neighborhood of a branch point, the fields may have nontrivial OPEs in this region. To
see this, Knizhnik starts with two local fields b (z) and D) (w), z€ p_l(U)IVZ, wE p‘l(U)|Vl,,
which are located close to a branch point e. Applying a chart transition to a neighborhood

of e, z—y=(z-e)''"|y( and w— y' = (w—e)””lvl,(e) one ends up with

, n-l n-l y/ r+l-n

b2 w)y=— Y (—) : (7.2.9)
Z=W =0 \Y

Here, I used that in the presence of a branch point b (y)c")(y) = (y—y) ", even if [#1'. In

order to apply this to the fields in the Fourier expansion, I will use that the basis elements

e (1) define a scalar product

_on n ifitezZ: tn=m-s
em-&s= ) em_s(l)= (7.2.10)
=0 0 else

which can be applied to by and c¢i. Combining it with the OPEs above, one ends up with

1 n-1 _V, r+l-n
bi(2) - cpr () :6k,k’_ Z (—) (7.2.11)
Z—w ; y

This quantity has to respect the transformation (7.2.7), in particular letting z encircle e,

r+l-n

this must result in a phase shift of bg. Indeed, the product above yields a factor (")~ » —

e 2mit (y”)_le_", which restricts r to r = k, and the sum collapses to this single term.

Extending y” around y'", one obtains

k+1-n

bi(2)-cp (@) = | — — —L +:bk(w)ck(w):+0(z—w)). (7.2.12)
Z—Ww w—e

For k= k', this result should be compared with the definition of the current
Jr(@) = lim [~ bi(2) e (@) + (2~ w) '], (7.2.13)

Therefore, Knizhnik concludes that the additional term due to the branch point indicates

the presence of some background field, serving as a source for the additional charge gy

k+1-n
jqk(z):jk(z)+£, qk:T' k=1,...,.n—-1. (7.2.14)

7.2.2 The Twisted Representations

Motivated by the discussion above, I will now extend the representation theory of section

3.4.1 to charges with values in the rational numbers, such that

q
bi(2)cr(w)lqr) = (z—w)_l(%) ‘ |Gk - (7.2.15)
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Here, I assume that normal ordering is again defined with respect to [0) and by, 1qx) =0,
n>0, ck,lqr =0, n=0. This representation is meant to exist locally in a chart around a

branch point e which I have set to e=0.
Due to the monodromy, the fields in the different sectors are supposed to have a new series
expansion in this representation

be(@) =Y br,z "%, k(@)= cxpz "TET (7.2.16)

ne”zZ ne”zZ

which must have an impact on the composite fields. Take for instance the the stress tensor.

Firstly, it acquires additional terms

1 gr(ge+1)

Ty (2) = Ti(2) + > = (7.2.17)

due to the OPE above. Secondly, it is build from by and ¢ which are now in the represen-

tation (7.2.16) on |qg). Therefore, the modes gain a shift by the charge g

1
Tgem= 2 (N=q1): bg_p C i + 5qk(qk+ Db mo- (7.2.18)

nez

and the field modes have new conformal weights [Tgy > by n] = (=n—qyi) by , and [Ty, o Cknl =
(—=n+qp) ¢k p- On the other hand, [jg, o) bknl = — by and [jg, o) Cknl = Ckp, as before,
and the U(1) charges are not affected. The state |gx) has charge gi, conforming with the

discussion in the last section, and conformal weight %qk(qk+ 1), also cf. section 3.4.2.

To conclude this section on the representation theory of the be-system on |gyg), notice that
the U(1) current behaves under Mébius transformations as in equation (3.4.14). Therefore,
the representation on |g) is not unitary and it inherits the background charge q =1 already

obtained in section 3.4.1.

Twist Fields

From the CFT point of view there should correspond a unique field to this representation
which has the same quantum numbers and which is fixed at the position of the branch point.
Formally, I will denote this isomorphism by the mapping * : pg, (0)*[0) = |gx) wherein pg, (0)
is the field corresponding to |gr) and |0) = ®7:_01 |0Y 1.4 For convenience, I will omit the * in
a correlator and write -« g, (0) *[0) = --- g, (0))o, cf. section 3.4.1.

In order to represent a branch point, g, (0) should respect the monodromy property of
the fields by and cg, i.e.

bi(€?™2) 11y, (0) = e 29 by (2) g, (0),
k(€7 2) g, € k(Z) g, (7.2.19)

27i 27iqy

cr(e z),uqk 0)=e Ck(Z)qu 0).

4Formally, if Vy is the vector space generated from |0) and the fields b, c, Vg, denotes the vector space on whch the

Ug, are represented, * € End(Vg,) x Vo — V..
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Consequently, the boundary conditions (7.2.7) are represented on the bc-system by means
of these fields. If the induced boundary conditions are non-trivial, i.e. gx €Z, it is common
to call pg, a “twist field” [Gin88| and the representation of the bc-system on the respective

state |gx) a “twisted representation”.

The monodromy condition imposed on the field ug, allows for a whole stack of twist fields

with charge gx+n, neZ, called “excited twist fields”. For instance the operator
Lge-1(0) = 11, (0) by (7.2.20)

defines a field of charge gy —1 and with conformal weight %qk(qk+ 1) — g§. Similarly, other
excited twist fields can be generated by an action of the modes of by and cx. However,
because they are in the same representation of the monodromy group, all these excited
twist fields belong to the same representation on |qi). The operator pg, (0) bi is special
since it formally can be identified with pg, (0)[1), whereby [1) is the second possible, however
not conformally invariant, vacuum representation in the CSbc. It played the role of the
logarithmic partner of |0) in section 4.1.3. This time, however, the conformal weights of

g, (0) and pg, (0) bro are not the same and both fields can not be logarithmic partners.

7.2.3 Conclusion

Due to the action of the monodromy group and in addition to the representation on the
conformally invariant state |0), the fermionic bc-system on T falls into n representations,
each of which is comprised by the fields by and ¢, k €{0,...,n—1}, with the field algebra
described by (7.2.15) and represented on pig, (e) respectively |ug,). These representations
are locally defined in the sense that the fields pg, (e) are fixed at a branch point e and
the operator product algebra (7.2.15) is defined in a neighborhood of this point. However,
since the monodromy group is Z, for every branch point, it is sufficient to consider the
representation theory in a chart including a single branch point. The currents ji defined
by the fields in these representations are single-valued on X and yield the same quantum
numbers for any value of k. This is not true for the stress tensor, which measures different

weights depending on the particular representation.
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On Twist Fields and Torus Periods 8

It is the achievement of M. Flohr to have related the twisted bc-system on T22 to SU(2)
SW theory, [Flo98, Flo04]. Thereby, he took three crucial steps. Firstly, Flohr “released”
the twist fields and considered the branch points as dynamical degrees of freedom on CP!.
As a consequence, the question arised how the operator product algebra gets enlarged when
OPEs between these fields are taken into account and which fields must be added in order
to close this algebra. The answer to this question was the second step Flohr had taken, he
proposed that the bc-system on the torus should be identified with the so-called triplet model
[GK96, Roh96, Kau95|. Finally, he argued that if the bc-system on the torus is identified
with the triplet model it is possible to describe the main data of SU(2) SW in terms of

correlation functions of this theory.

In this chapter I will motivate the choice of the triplet model but take a more geometric
approach than that of Flohr. From this will follow that it is necessary to release the twist
fields in order to describe the fundamental parameters of the torus (its periods and their
ratio). As a consequence I will then further deduce that the bc-system on the torus must be

extended to a logarithmic CFT, and the triplet model will be the minimalistic extension.

In the first section, I will release the branch points and transform the algebraic curve T2
into the “Legendre family”. This formulation is canonical in order to study small movements
in the moduli space of tori. In particular, the periods of the tori satisfy a hypergeometric

differential equation in the moduli parameter [CMSPO03].

In the following section 8.2, I will identify this differential equation with the nullvector
condition on the twist field Bt [F1098, Flo04, Flo03, Gab03|, which again relies on the
possibility that the branch points may vary. This will explain why it is necessary to extend
the bc-system to an LCFT.

The chapter will be concluded with a brief discussion of the representation theory of
the bc-system and a brief introduction of the triplet model as the minimalistic logarithmic

extension includeing the twist fields.

8.1 The Legendre Family

The algebraic curve T?? can be transformed into a polynomial of third order

& : YizM=z(z-1(z-1), AeCP'\{c0,0,1} (8.1.1)
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by means of SL(2,C) transformations of z and y.1 Indeed, every compact Riemannian surface
of genus one is the set of zeros of a polynomial of this form for some A [Jos02, FBO0O].
Therefore, the moduli spaces of the two descriptions of tori are equivalent, T2 =~ &,. The
branch points are now positioned at {c0,0,1,1}, and &, can be considered to be parametrized
by A€ CP!'\{c0,0,1}. This makes the Legendre family particularly nice to study variations of
the corresponding equivalence classes of tori as functions of A, or to study the singularities
of &, which are evident in terms of A. I will denote the space g = CP'\ {00,0,1} as the
moduli space of the Legendre family &, with coordinate A.

8.1.1 Relation to the Lattice Torus

In what sense can a variation in A evoke a movement between different equivalence classes
of tori? The canonical parameter to distinguish or identify equivalence classes of tori is the

ratio T of the periods of a torus in the lattice description.

Below I will argue that each non-singular member of the Legendre family is equivalent to

a lattice torus

C/Ly={10},  Ly={mIp@)+nlA), T(A) = i?qD((;))

, $(1)>0, mneZi, (8.1.2)

whereby the choice of sign in the definition of 7 is such as to customize (r) >0 [FB00].
Without loss of generality I will assume that after some rescaling of the periods I may
choose the plus sign. The periods of Ly are described in terms of cohomology classes of &;.

The differential form
dz

y(z;A)

is holomorphic and without zeros on &; .2 Therefore, it is closed with respect to the de

o(z; ) =

(8.1.3)

Iwithout loss of generality, e4 # 0. Apply the following transformations and some redefinition of y

€42 2 12 3 -1
- = Y-y = [Ttea—e(z—u)(z—ux)(z—u3), u;=e;lesles—e)] .
z+e4 i=1

Z—

The change of variables z — (17 — u)z + 17 and another appropriate redefinition of ¥’ yield the desired result,

whereby A = %
2This is most obvious in the Weierstrass formulation of &3, [FB00]. Let L, be the lattice corresponding to &;. One

may again redefine &) by z — 41824 % which yields the Weierstrass normal form

X(g2.83) 1 V*=42-grz-g3, y,z€C

4173 1 (8.1.4)
g2=——W -1+, gg=—(A+D2A*-51+2).
3 27
This curve is called Weierstrass normal form because the Weierstrass function
»(2) ! + ( 1 ! ) (8.1.5)
z)=— —_— ], 1.
2 vl lz-0?  o?
satisfies the differential equation
0 (2% =1p(2) - £20(2) - g39(2). (8.1.6)
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Rham differential and has a well defined cohomology class. By means of de Rham duality,
this cohomology class can be defined to be the dual of some homology class in H;(&),72),

which, without loss of generality, is generated by the cycles as depicted below,

and with intersection number 1. Denote by a* and B* the basis for H'(&),2) dual to a and
B, ie. [,a*=1, [,B*=0. The cohomology class of @ is given by an expansion in this basis

as

[a)]:a*f@ﬂﬂ*fa). (8.1.7)
a B
Thus, if [yl € H1(84,2), [yl = ma+nf, m,neZ one finds that
[a)]:mfa)+nfa). (8.1.8)
[yl a B

Since the elliptic integrals like [, @ take their values on Ly (cf. the explanation in the footnote

on pg. 96), I can identify
HD(A)Zf(D , H(/l)Zf(D (8.1.9)
a B

and interpret (8.1.8) as the representative for [y] on C/Ly.

8.1.2 A Differential Equation for the Periods

The homotopy class [@(A)] and, if the cycles are fixed, also the periods IIp and II, satisfy a

hypergeometric differential equation

2
d’oh +(2A—1)d@—w+lm(ﬂ) =0, (8.1.10)

A =D=37 dA 4

whereby @ is the representative of [@] and the differential equation is zero up to exact forms.
The following nice proof is taken from [CMSP03]. The quantity [@(A)] =TIp(A)a* +I1(1)B*

can be interpreted as a differential form on

HY(&,2):= U HY(&),2). (8.1.11)
A1eCP1\{c0,0,1}

The Weierstrass function is periodic in IT and IIp and is defined on C/L,. It induces a conformal equivalence

between X(g2, g3) and C/Ly — {[0]}, via [z] — (go(z),go'(z)), whereby [0] is taken out since g has a pole at this point
_9ow
Tem
and the elliptic integral E(y) = fy % is formally the inverse of g, mapping X(g», g3) to C/L,. This integrand,

[FB0O]. Let y () be a curve on C/Lj which does not pass a zero of ga’. Omitting [-] for convenience, dy (¢)
dp(¥)
50/(}’) »
restricted to a curve which is not passing a zero of ’, is a holomorphic one form and thus closed. It can be
identified with @ on &}.

dy =
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The derivative 9, = d% denotes the the covariant differential on this space, whereby the
connection is chosen such that a* and B* are (locally) constant. Then, formally, d;[@(A)] =
OZlIpA)a* +0,IT(1) B* = [0p@(A)]. For this relation to make sense, one has to prove that
0,@(A) is indeed a representative of a cohomology class of &. Take the representative ®@(A),
then

0,0(1) = %[z(z—l)(z—/l)3]_%dz (8.1.12)

is a meromorphic one-form. However, its pole has a multiplicity greater equal two at (y,2) =

(0,A) =: P, such that it nevertheless defines a cohomology class. Namely, in a neighborhood

of P, y(z) is invertible and one can write y2 = Afl;y 5 (z(y) — 1), whereby h(y) is holomorphic

in y and h(0) =1. Solving for z and expandlng h(y)~ 1 around y=0 yields z=A+ O(yz).

Now, with yz(z) p(z) one has @ = 25——, and inserting the approximation for z yields

0 p(Z)’
o= 2/1(/1 5 +O(y‘2). Thus, plugging in again z—A = O(yz)7

1 a)(/l) dy -2 dy

WO =5 T 10=ne-n "%V )T aa-n,2

+0(y7d. (8.1.13)

The following remarks conclude the proof. By Stokes theorem, the residuum of a one-form

depends only on the cohomology class. Therefore, the sequence

H'@\{P},2) 2 f” (8.1.14)

O . Hl(g Z) restrlctlon
is exact and 03@(A) is a cohomology class on & and not just on &\{P}. Since @ and 0@ are
both cohomology classes and H'(&,Z) has two generators, every other cohomology class can

be expanded in these two. In particular
A(A)Oia)+B(7t)0MD+C(7L)(D=O, (8.1.15)

modulo an exact form. A calculation reveals that f = [z(z- 1)(z—/1)_3]% satisfies df =
(z—1)0)®+ 20 0 —2z(z — 1)aja>. Using z=2z—-A+ A in this equation and (z—A)0 @ = %a),
(z—/l)aim = %6,1@ yields the differential equation for the periods.

8.1.3 Solutions for the Periods

This differential equation is a special case of the hypergeometric equation

2
AA - l)d—+[(a+b+1)7t C]—+abF 0, (8.1.16)

dA?
with a=b=3 L and ¢=1. Its solutions are the hypergeometric functions F(a, b; c|A), classified
for instance in [E*85]. In the case under consideration, the solution space may be spanned
by the functions
FW=FG 510 , BA)=iF(3111-A). (8.1.17)
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Erdelyi defines the function F (%, %; 1|A) by an integral representation which yields an analytic,

single-valued function on C\R=Y [E*85]. Tts local form in a neighborhood of A =0 equals

12 (TE+n)
2 !

2
) [k, —log(1-A)]1Q-A)", (8.1.18)
=}

whereby [1-A| <1, Jarg(1-A)|<m and
kn=2y(n+1) -2y +n), WA =0logT ). (8.1.19)

In this shape (8.1.18), it is evident that the solutions F; and F, of the differential equation

for the periods have logarithmic singularities at A =1 and A =0, respectively.

Both solutions F; and F, get, however, mixed whenever A passes the branch cut between

0 and 1. The results are again taken from [E*85|, who used the relation

2
1 i 1 X (TG +n)
—naFi(A)—=log(1-NF(A) =— k,1-1)", (8.1.20)
2T e 2,;0( rihn! ) "
to obtain
Fl 1 0 Fl F] 1 -2 Fl
Mo - — y M1 ot — , (8.1.21)
F 2 1)\F F, 0 1/\F

whereby po and p; denote the operation of encircling the branch points 0 and 1, once.
The group generated by the matrices above is called the “global monodromy group” of &)
[CMSP03]. Due to the monodromy property, the choice of the solutions F; and F, has no
fundamental meaning. Indeed, given the lattice defined by the periods Fi, F, all lattices in
the orbit of the monodromy group are identical. For this reason, the periods corresponding

to different algebraic surfaces are classified by the global monodromy groups and vice versa.

8.2 LCFT-fication of the Legendre Family

The Legendre family has a floating branch point, whereas in Knizhniks approach all branch
points were fixed. Therefore, in order to find a field theoretic expression for the periods, I
will now reinvestigate the fermionic bc-system on T?? and reformulate the branch points as
dynamical degrees of freedom. Behind this work stands a pile of publications on the LCFT at
c¢=-2, on my table are stacked up in particular the references [F1098, Flo03, Flo04, Kau95,
Gab03, Gur93|.

Until now, the bc-system on T?? consists of two different local representations |gg/1) in
every chart which contains a branch point, and one globally defined representation on |0)

with support on X. The following list summarizes the representations and fields I have
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discussed in chapter 7:

reps. charges J weights A | fields domain

|0) 0 0 1(z) 2

10) := Iq1) 0 0 1(e;) == po(e;) {e;} (8.2.1)
I = 190> -1 -3 plei) = p_1(ei) {ei}

o) := by |qo) -3 s | ole)=Dboop_sle) | fes)

Only, the latter two rows denote twist fields, whereas the first representations have trivial
monodromy. Notice that the untwisted representations have the same quantum numbers and
might be logarithmic partners, whereas this is not true for the twist fields. The dynamical
fields represented on these spaces are the fields b(z) and c(z). I have distinguished their
representations by an index k such that for instance b(z) denoted the representation on |0)

and b (z) the representation on |gg). For convenience I will now drop this index.

It is necessary to release the fields representing the branch points in order to reproduce
the situation of the Legendre family. The branch point coordinates and corresponding fields
may then move on CP!, and the background fields become additional dynamical quantities.
In this sense, the corresponding local representations become global representations on X
and by a conformal transformation of the algebraic surface as described in the last section,
one may identify {e;};=1,..4=10,1,00,A} € CP!, 1€ /.

As soon as twist the fields related to the branch points are released, the question arises
what the operator product algebra looks like. In particular, I would like to be able to

calculate correlation functions of the kind

S n
{ qTo]] (8.2.2)

Zi€Z, wjeCP!
YD+ I+ JD=-1 |

m
bi(z) [ 1, @) #0,
=1 i=1 j=1
whereby ¢; can be b(z) or c¢(z) and (-) =¢(-)o, cf. section 3.4.1. The condition LI+ J(H+
Y« J(I) =—1 is necessary to cancel the background charge q =1. This is accomplished by the
operators €@;, which denote any non-dynamical quantities and which T will call “screening

operators”, for this reason. For instance, by is a screening operator in (by1(z)) =(0|1) = 1.

8.2.1 A Hypergeometric Equation for the Twist Fields

For the moment, I am interested in correlation functions including the twist fields p_ 1.
They are promising candidates to simulate the periods of the Legendre family because they

introduce some monodromy and, hence, mimic the non-trivial behaviour of the branch points.

To calculate correlation functions, it is helpful to search for restrictions such as nullvector

conditions. Indeed, the representation |u) satisfies a nullvector condition at level 2

(T_+2T%)Iu =0, (8.2.3)
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which signifies that the four-point function has to satisfy a hypergeometric differential equa-
tion [Gur93, Flo03],

(co o)A = A3 (A-1)iFA),

d2F() dF()) 1 (8.2.4)

A(A—l)w +(2A_1)W+ZF(/U =0.

Thus, up to a prefactor, the four-point function of the u fields reproduces the periods of the
Legendre family and, without loss of generality, I choose the two solutions to be F; and F,

as in (8.1.3). The corresponding four point functions now equals
(o pEIRMUO M) = AFA-DIFW), ke(l,2}, (8.2.5)
and should be compared with
A =F(3,5,110), THpW) =iF(3,3,1I4). (8.2.6)

Consequently, the correlation functions above and the periods of the Legendre family define
equivalent tori and their quotient yields the same fundamental parameter?

_HpA) _ {co ploo)u(1)u(0)p(A))2
(1) = =
I1(A) (co (o) (D) p(0) ()

(8.2.7)

Applying the monodromy group (8.1.21), I can redefine the periods without changing the
underlying lattice torus. In this respect, the “conformal blocks” in the correlation functions

are not uniquely determined.

8.2.2 The Necessity of a Logarithmic Extension

The necessity for a logarithmic extension of the bc-system on the torus can now be seen
from the operator product expansion between the twist fields, which was originally derived
by V. Gurarie [Gur93]. To explain this, I will, however, follow a publication of M. Gaberdiel

in [Gab03|. A general solution of the nullvector condition equals
FA)=A Fi(A)+B [Fi()]log (1) + HA), (8.2.8)

whereby F; and H are regular at z=0, and I used (8.1.20) as well as A — 1—-A to reformulate
F(A) = %(Fl ) log]L+H). In the expression above it is immediate that the OPE between
two fields g must contain logarithms and splits into two parts. Namely, if two of the fields in
the four-point function are shifted to a neighborhood of infinity and treated as a background
field Q(o0), the correlation function still has to respect the OPE by its definition. Thus,

pRplw) =(z- w)% (1 (W) + P2 (w)log (z —w)), (8.2.9)

3Two tori are equivalent, iff their lattices differ by some nonzero complex number L = aL/, a € C\ {0}. This is more
general than saying that two tori are identical, i.e. L = L'. The identical tori are related by the global monodromy

group, cf. section 8.1.
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with A = (Q(c0)h1(0)) , B = (Q(c0)h2(0)). Gaberdiel uses a further trick which allows to
determine the fields ¢;. He lets A encircle 0 in the OPE with the other twist fields shifted
nearby infinity, which yields

(Q(00)e?™ T (1) (0)) = A7 (A +27iB + Blog(A)). (8.2.10)
Thus, with ¢;]0) =:|¢;) he obtains

Told2) =0, Tolp1) =12y . (8.2.11)

I have encountered such an equation already in (4.1.10) and thus may conclude that the
fermionic bc-system on the torus unavoidably has to be logarithmically extended, whereby
$2(2) = 1(2) and ¢1(2) = ¥p(2), cf. chapter 4. The fields 1(z) and ¥,(z) have the same
conformal weights and U(1) charges, as is demanded for logarithmic partners of the Vira-
soro algebra. In (8.2.1) already appears a set of fields and representations subject to that
constraint. Therefore, I claim that for the fermionic bc-system on &,

1 ~
(D pw) = (z—w)i (1(w) + 1(w)log (z - w)),
lf K } 8 (8.2.12)
1(z) =¥p(2), 10) = bol0) ®€l|0) 5,
and all fields in the untwisted sector have to be logarithmically extended in analogy with

chapter 4.

8.3 The Triplet Model

The triplet model is an LCFT which contains the logarithmically extended untwisted sector
as well as the twisted representations [GK96, Roh96, Kau95]. To the best of my knowledge,
this model is in addition the LCFT whose operator product algebra closes on the represen-
tations noted down in (8.2.1) with a minimal amount of additional representations added.
Its basic ingredient is an additional symmetry which restricts and controls the possible rep-
resentations. In order to make this explicit, I will comment on the means which restrict the
representation spaces of a conformal field theory. Therefore, I will firstly introduce what I
understand under a physically eligible representation, and thereafter discuss the impact of

the additional symmetries and nullstate conditions which lead to the triplet model.

8.3.1 Symmetries and Representations

The OPE of the twist fields could be reconstructed due to a nullstate condition which made
it necessary to extend the representation of the fermionic bc-system on |u) by |0) and |0).

Behind this stands a general feature of CFTs. Since the fields and states are supposed
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to be isomorphic, obtaining knowledge of the operator product algebra of the fields and
studying the possible representation spaces are two sides of the same medal. This knowledge
is basically deduced from nullstates and symmetries. To explain how this works, I must

specify what I understand under a “physically relevant” representation space.

In section 3.4.1, T have defined a collection of representations on charged states |p),
however, not all of them are “physically” reasonable. In the situation of a CFT for instance,
the “physical” representation spaces should be build on states which preserve conformal sym-
metry. This condition would have restricted the bc-system to be build solely on |0), which
is the only SL(2,C) invariant state among the states |p), p € Z. On the other hand, since the
bc-system breaks unitarity, it is not possible to construct a thoroughly “physical” theory,
anyway, and it was necessary to include the dual state (1| to account for the background

charge. Therefore, I will restrict the representations as follows:

Restriction by Symmetries:

Let € U.¥ be some operator product algebra of holomorphic fields, whereby I have extracted
the part % consisting of the symmetry generators T, for the interior Virasoro symmetry,
and S%(z) , a=1...A for additional exterior symmetries. These symmetries are subject to
[Sg, Tol =0, [S4, Sé’] =0, and I assume that there exists a unique SL(2,C) invariant state |0), on
which they are diagonal. In the spirit of the consequences a logarithmic deformation along
the lines of [FFH*02] implies, I understand by a physically eligible representation (PER) of
€ U a multiplet M(¢)x of vectors |¢p, k) , k=1,...,K subject to the following conditions:

0 REPRESENTATION OF THE OPA: In the representation on M(¢)g, the fields in € have a

mode expansion

g(z) — q)(naive) (Z) + &)(Z) , q)(naive) (Z) — Z @nz—n—AT((D)

ne”z

whereby de End(M(¢p) k) ((z, z‘l))[logz]. For all k, |¢, k) is annihilated by ®,, , O, n>
0. The set of states {lp, k) € M(P)x : &D(z)lcp, k) = 0} is not empty. The operator
product algebra of the fields in € is represented on |¢, k) V k.

0 INTERIOR SYMMETRY: On every |¢, k), the field T can be decomposed as
T(2) = T™¥)(2) + g(2),

such that the action of the field modes in T™aV® =y T,(ln"‘ive)z_”_2 on |¢p, k) does
not lead out of the k™ sector, and the zero mode is diagonal. The other field g(z) €
End(Mx)((z,z~1)) permutes the elements of the multiplet. Hence, the eigenvalue Ay of
Ténaive) is a quantum number of M(¢)g. Moreover, I assume that the OPA of T with the

4In order to avoid indices which are not integers, I do not assume that the field modes ®,, have conformal weight — 7.
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fields in € is preserved and that there exists some |, k) € {|¢p, k) € M(P)k : @(z)lgb, k) =0}
such that g(z)|¢, k) =0.

00 EXTERIOR SYMMETRY: I assume that the fields §%(z) € ¥ have expansions and repre-

sentations of the kind

S%(z) = $4M) (2) 1 gga(2) ©.3.1)

with g¢ € End(Mg)((z, z ) [logz]. The fields S¢ (naive) ,nd gsa shall enjoy analogue
properties as were demanded for T on any |, k). The conditions [S¢ (Onaive) , To(naive)] =0
and [ S% (Onaive), sb (Onaive)] =0 shall be valid such that the eigenvalues of S% (()naive) are quan-
tum numbers of M(¢)k. I do further assume that there exists some ‘“non-logarithmic”

states |, k) € {|¢p, k) € M(P)k : (f(z)l(p, k) =0=g(2)|¢, k)} subject to gs«(2)|¢p, k) =0 Va.

U FIELD-STATE CORRESPONDENCE: There exists an isomorphism * such that ¢(0) = |0) =
|, k) ¥V k defines an element ¢ € End(My)((z, z‘l))[log z]. T assume that the symmetry
generators T(z) and S%(z) have OPEs with the fields ¢, which take the generic form
for the naive fields and do not lead out of the representation. Consequently, ¢ has
the same quantum numbers as |¢, k) with respect to T3V® and §¢ (naive) - The OPE of
g(z) and gs«(2z) with ¢y, contains fields ¢y, k # k' or their derivatives, corresponding

to the action of those operators on a state |¢, k).

O IRREDUCIBILITY: If there exist isomorphic representations Mg = M, i.e. the field
algebra % contains a bijective linear mapping between the modules generated from €
on these spaces, I treat them as equivalence classes and “choose” the set of vectors which
is annihilated by the maximal amount of symmetry generators 7®ave) — gnaive) Z, nez

as representative.

By this means it is clear that the PERs are also representations of certain symmetries and

can thus be classified and restricted.

Some Examples The holomorphic- antiholomorphic fermionic be-system of chapter 4 has
four PERs if the zero modes b,b and ¢,¢ are excluded. The states |0,0) and |1,1) yield a
doublet, the off-diagonal states [0,1) and |1,0) singlet representations. The representations
with higher charge are not PERs, because there exist modes in the field algebra which act
as isomorphisms. If, as described in chapter 4, it is logarithmically extended, the PERs are
preserved. The reason is that even though the modes by and by enter the extension fields,
these can not add to the field algebra, for it would break Mobius covariance, cf. section
4.1.3.

Similar arguments for other scenarios lead to the following tabular, wherein “+” denotes
the theory with zero modes, “—” the theory without zero modes and all states without tilde

or € are non-logarithmic:
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bc-system | unextended PERs logarithmically extended PERs

holo + |0) {10y,10y}
holo — 0), 1) {105,100}, 10y ®€l0) 7, 11) ®10) %
holo-anti + | |0,0) {10,0),11,1)}

holo-anti — | {/0,0),11,1)}, 10,1), [1,0) | {0,0),11,1)}, [0,1), [1,0)

Restriction by Nulistates

This examplifies that the condition of irreducibility puts constraints on the theory. Another
example is the twist state |p), which has a potential subrepresentation on a nullstate, cf.
section 8.2.1. This state was, however, identical to zero, such that the submodule generated
by it already was excluded. Still, it may happen that there are subrepresentations on vec-
tors |N) € spanc {[1p,; ¢i 0 10} i, €6V, n;< 0} which do not vanish identically. The
modules build on such vectors must be divided out, which is effectively the same as setting
[Ny =0. This must be accompanied by the condition that any correlation function which
includes the field N(z) corresponding to |N) must vanish, and this is equivalent to requiring

that in the representation on any M(¢)g
v, k) =0, NIV9|p ky=0, Vk. (8.3.2)

If Nénaive) is constituted by the zero modes of certain symmetry generators, this restricts the

possible eigenvalues of those generators and thus the possible representation spaces.

8.3.2 Redlization of the Triplet Model

The triplet model results from an additional SU(2) symmetry in the logarithmic fermionic
be-system.? The additional symmetry introduces new nullstate conditions and thus restricts
the PERs [GK96, Roh96, Kau95|.

The su(2) Lie algebra is realized in terms of the (naive part of the) zero modes of the field
generators W2 corresponding to the fields®
W'(z) = -0%e(2)0e(2),
1
W2(z) = > [02e(2)0.b(2) +2b(2)d e(2)] (8.3.3)

W3(2) = -02b(2)0,b(2).

5This also works for the non-logarithmic fermionic bc-system without zero modes, which is a special case.
6For the logarithmic case, one may set by = 0 = ¢p, ad libitum. If the non-logarithmic situation is considered, set in
additione=p =0.

105



The field modes W extend the Virasoro algebra by

1 2
r,,rl=m-mf,. - Em(m ~Dbém,-n>

(L, Wyl= Cm—-mWg,,,

(W4 WP =g |2(m-n)A + L m-memt+2n? - mn-8)T
m YWn m+n 20 —m+n (8.3.4)

1
—Eom(m2 —-1(m? —4)5m,_,,)

5 12
+ fab (ﬁ(zm2 +2n? —3mn-HW¢, , + gv,fﬁn) ,
whereby A(z) z:Iz(z) : —%Oil(z) and V¥(z) =: T(2)W%(2): —%dﬁwa(z). The metric is sym-
metric with g“b =6% and the structure constants are those of su(2), namely fC“b = jeabe,

Gaberdiel and Rhosiepe also note down the nullstates which are decisive for the determi-
nation of the possible representations. The condition that the zero modes of the naive part

of the corresponding nullfield on a PER be zero yields
AZ(8Ag+1)(BAY—3)(Agp—1) 1§, k) =0 (8.3.5)

for arbitrary multiplets M(¢)k, and is accompanied by
(W, W1 malve) | ky = %(md, ~1) £ we P g k). (8.3.6)

Consequently, the only allowed PERs fall into representations of su(2) and are states with
highest weights {0,—%,3,1}. This extends the representations listed in (8.2.1) in a minimal-
istic way.

8.3.3 Characters

In the next chapter I will determine the prepotential of pure gauge, SU(2) Seiberg-Witten
in terms of some characters of the triplet model. Therefore, I will conclude this chapter by

quoting the ones relevant for my considerations.

H. G. Kausch, [Kau95]|, proposed that certain primary fields in the Kac table, for instance

those in the “augmented” minimal model ¢g3 with conformal weights
1 2
Ar,s:§((2r—s) -1), 0<r<3,0<s<6, (8.3.7)

can be identified with the fields appearing in the non-logarithmic triplet model. Indeed,
the fields in the augmented minimal model have the correct quantum numbers and the field

which by such is the analogue of u also has the correct nullstate condition, cf. [Flo03, RRS08|.
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By this analogy, Kausch concluded that the characters of the non-logarithmic triplet model

are those of the augmented minimal model

0 0
v = 202D (g = 229
8 n(q) 8 n(q) 8.3.8)
xo(@) = E (M—nz(q)) 0@ :1(91,2(@ +n2(q)) -
0 2 n(q) ’ 1 2 T](q) ’
(kr+s)?

with Jacobi-Riemann theta functions ©,s(q) =Y. ,czq~ % , Dedekind n function defined by

n(q) = qi Mpen(1— g™ and g =e*™ 7. The parameter 7 is the modulus of some lattice torus.

These characters were completed by [GK96, Flo96] to match with the logarithmically
extended triplet model. However, I will not make use of the additional characters and refer

the interested reader to the literature just cited.

Now, I have everything together to relate the triplet model to Seiberg-Witten theory.
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Relation to Seiberg-Witten Theory 9

In this chapter I will determine the spectral torus of pure gauge, SU(2) Seiberg-Witten
theory in terms of characters of the triplet model. Moreover, I will obtain the prepotential
as a function of the torus modulus 7, which can be expressed as the ratio of the four-point
functions of the twist field p in this theory, (8.2.7). It follows, that this specific Seiberg-
Witten theory is completely determined by the triplet model.

Firstly, I will start with a brief introduction to Seiberg-Witten theory and discuss its spec-
tral curve. The relation to the triplet model will be discussed in section 9.2 and summarizes
the results of [VF07].

9.1 Some Words on Seiberg-Witten Theory

In [SW94|, N. Seiberg and E. Witten derived the full prepotential & (including instantons)
of the low energy effective action for A =2 supersymmetry with gauge group SU(2). In
terms of A =1 fields, this theory is described by a family of Lagrangians

_dF ) dEFA)
T Tdaa T Taw

1 -
L= 8—3Ud49 AAp +fd29 T(AW W, |, Ap 9.1.1)
/s
The spacetime metric has a Minkowskian (mostly minus) signature and, with the exception
that I use another normalization for the Pontrjagin index, giy fo: FAF € Z [Ber96], I stick to
the conventions of [Bil96]. The prepotential % is holomorphic in the expectation value A of
the A =1 chiral multiplet (®) = %AO'g.

The Lagrangian above has its domain on the effective vacuum configurations while the
massive Goldstone bosons are integrated out. By the term “effective vacuum” I mean that
for nonvanishing values of (®) the SU(2) gauge symmetry is broken to U(1) and the thus
obtained field configurations do not enjoy the full symmetry of the theory. Furthermore, as
soon as the scalar field is in an effective vacuum configuration, all other particles have the

same property for they belong to the same A" =2 multiplet.

In the following I will only motivate the basic geometric facts which lead to the spectral
curve of this theory and to its interpretation as a torus. The reader interested in the details,
is refered to the literature [Bil96, SW94, DP99, Ler97|. Afterwards, I will relate the spectral
torus to the triplet model.
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9.1.1 The Spectral Curve of SW Theory

There is a remnant of the larger SU(2) symmetry hidden behind the choice of A, namely
under rotations by m around the first or second axis of the gauge group, A— —A and these
are equivalent gauge configurations. Thus, rather than (®), it is reasonable to consider the
Casimir (tr ®?) as a gauge invariant parameter. If ¢ is the scalar field in the chiral multiplet
®, the Casimir yields some u = (tr ¢?). The parameter space of u € C constitutes the moduli
space of gauge inequivalent effective vacua .#sw, and thus of the family ZL4(,) = Z£y. Formally

one can add {oo} to sy, which is a singular point for %£,.

In general, the moduli space .#sw has singularities at those values of u at which the
effective action is not defined or inadequate to describe the massless sector. Besides {oo},
these are the points u at which massive field modes which have been integrated out turn
massless, cf. [SW94, Bil96, DP99, Ler97|.

Seiberg and Witten argued [SW94] that there should exist two additional singular points
{s,—s} € Msw, such that
Mgy =CP'\ {oo, 5,5} (9.1.2)

The parametrization in terms of u = (tr ¢?) seems to make the setting more difficult. The
reason is that the inverse of (¢) — (tr (p2> has two roots in terms of u. Indeed, the analysis of
Seiberg and Witten revealed that the paramtetrization in (¢) yields a two-sheeted covering

of Msw. Therefore, A, Ap and in particular & are not single-valued in u.

The particle spectrum for Seiberg-Witten theory is bound to satisfy the mass formula
[DP99]
Z(u)=na(u)+ map(u), 9.1.3)

whereby a and ap are the scalar field components in A and Ap, respectively, n corresponds
to an electric charge and m to a magnetic charge. By this means, the spectrum can be read
off from some lattice torus. In addition, S(zr(u)) >0 by requiring that () shall serve as a
metric on the space of vacuum configurations a and ap [Bil96, SW94]. The relation above
(9.1.3) is the spectral torus describing the massive particles in Seiberg-Witten theory. The
singularities in .#sw correspond to those values of a and ap for which the torus becomes

singular.

9.1.2 Modular Transformations

The spectral torus does only deserve its name “torus”, if it is possible to prove that the
physics behind it is invariant under modular SL(2,7) transformations. As already mentioned
in section 8.2.1, the orbit of a lattice torus under SL(2,Z) collects all equivalent tori. Thus, I
will in the following explain that the partition function of Seiberg Witten theory is modular

invariant.
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The Lagrangians

+
1 1 A A 0 i
La=— fdze S[r(AWTW,] +—fd94 DY 7Py, 1= 9.1.4)
8n 2 A A -i 0
are invariant under
Ap Ap 1 n
— M(n) , M(n)= , heZ. (9.1.5)
A A 0 1
While MTIM =1, one obtains a shift of the coupling constant 7 = % + g‘i’(’;)
=940 9.1.6)
- dA o
which adds an, however, irrelevant term to the theta angle
O(u)+2nm  Ami
T(W+n= () (9.1.7)

21 g’
To see this, I have used the conventions of Bilal, W¥W,|p = i(FﬂV—il:“W)(F“V—iF“") +...
[Bil96] and the observation that since # Jst F AF € Z the shift does not contribute to the

partition function®
Z[u] = exp{ f d*x i%,}. (9.1.8)

The partition function is further invariant under a duality which inverts the gauge coupling.

This is obtained by a Legendre transformation

Fp(Ap) =F(A) - AAp, (9.1.9)
such that
(Ap) d4 ! (9.1.10)
T =Ty T T a0 ..
DD =44, T 1(A)

whilst the action looks structurally as before with new conjugate coordinate 04,%p = —A.
How this transformation is implemented for the A4 =1 formulation of the theory is discussed
in full detail in [Bil96, SW94]. Physically, it constitutes an analytic extension of & to the
strong (respectively low) coupling regime. From another point of view, the action of the

second generator exchanges the roles of ap and a and thus magnetic and electric charges.

For me it was important to note that the partition sum build from the Lagrangians £, is

indeed invariant under the elliptic modular group

1 1 0 1
SL(Z,Z):(( ), ( )). (9.1.11)
01 -1 0

The action of this group is thus well defined on the spectral torus which consequently deserves

1ts name.

IThis is an abuse of denotation. The partition function is rather Z = S Mgy Zluldu, for some appropriate measure
duon gy .
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It is now suggestive to reinterpret the family of Lagrangians £, and substitute the pa-
rameter A(u) by the torus modulus 7(u). Thereby, £, — £, and the family of Lagrangians
gets parametrized over the space of inequivalent tori. This would be a first step towards a
CFT approach to Seiberg-Witten theory.

9.2 The Spectral Curve and Triplet Characters

In the following, I will explain how the family of Lagrangians %, can be reformulated in
terms of 7. This was one main part in my publication with M. Flohr, [VF07]. At this time, we
searched after an expression of & in terms of characters of the triplet model, which was the
second main part. This was encouraged by some former work of Flohr on a correspondence
between Seiberg-Witten theory and the triplet model [Flo04, Flo98| and by a publication
of W. Nahm [Nah96]. In his papers, Flohr could express the spectral curve in terms of
correlation functions of the triplet model. Nahm, on the other hand, proposed that it should
be possible to combine a and ap into a modular form of weight —1, for which he noted down
the following expression in terms of 7:
2(3)

ntm -

It is not possible to express ¢ in terms of characters of ordinary CFTs, since they have have

c(1) = ap(u(r)) —ta(u(r)) ~ 9.2.1)

modular weight zero. On the other hand, the characters yo and y; of the triplet model
contain both a term n? which has modular weight one. Therefore, it seemed reasonable to
try to obtain c¢ in terms of characters of the triplet model. Indeed, we could determine ¢ in

terms of characters of the triplet model but not the prepotential.

I will now explain by which steps ¢ could be articulated solely by means of triplet characters

and by which the prepotential & could be determined as a function of 7.

9.2.1 The Spectral Curve in Terms of 7

The Moduli space sy = CP!\ {oo, s} of £, conforms with the moduli space of the spectral
torus, as follows from section 9.1.1. Therefore, it is reasonable to relate to the spectral torus

an algebraic curve of the form
P =(@-9(z+s)(z-uw). 9.2.2)

In analogy with the discussion in section 8.1.1, one can define a differential one-form

dz

d(z;u) =
(2 ) y(z;u)

(9.2.3)

with respect to the curve above, fix two branch cuts [co---u] and [-1---1] and a choice

of cycles, and derive the periods integrating over @. In order to make use of the results
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of sections 8.1.2 and 8.1.3, I substitute z=2z—1 under the corresponding integrals. This

transforms the algebraic curve above into the Legendre form such that

fp() = 29)7% [, d(1) A = S
) =972 fron) T 2s

) (9.2.4)

with @ as defined in (8.1.3). The periods thus obtained can be expressed in terms of (8.1.17)

and define a torus lattice with moduli parameter

FG,311-1)

= 9.2.5
TV T 929

wherein A is a function of u. Notice, that T can directly be related to the triplet model and

be derived by means of the twist field four-point functions (8.2.7).

In [E*85, Vol. 2, pg. 354f], I have found several choices for the inverse A(r) of (9.2.5). Since
all of them are connected by modular (i.e. SL(2,2)) transformations, I chose without loss of

generality

4
93(”) , 9.2.6)

A(T) =
@ (92 @
whereby

92(.’:) -2 Z q(T)%(n+%)2

, 0@ =1+2) g™, Gm=1+2) ()"g?"  (9.2.7)
n=0 = n=1

n=1

are the Jacobi theta functions and as before g = exp {2mit}, cf. section 8.3.3. This choice of
A is in concordance with the publications [HK07, ABKO08], which appeared during the time
when M. Flohr and I published our work. Given A, one obtains u by means of the relation in
(9.2.4) and, after some Maple gymnastics, it was possible to express this quantity in terms
of the Dedekind 7 function [VF07]

s [(mEn®

Substituting this for u yields a new parametrization of the family of Lagrangians %, by 7.

The Periods of the Spectral Curve

The question remains, what a and ap look like in terms of 7. The periods IIp and IT are not
identical with a and ap, however they are related by means of the modulus 7, demanding

that it equals the modulus of the spectral curve

_HDLdaD

< Ip(u) =0yap(u), I(u) =0,a(u). 9.2.9)
I1 da
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Thus, a and ap can be derived from a one-form @gy, called the Seiberg-Witten differential,

which satisfies 0,05 = ®(u). Integrating this condition, one ends up with

(z—uw)dz
ap(u) Zf osw(u), alu)= f osw (), @sw= T +exact. (9.2.10)
a B

The solutions to these integrals have been derived in different ways. One is by noting that for
fixed contours, the periods ap and a satisfy again some Hypergeometric differential equation
which yields [Ler97]

. 2 2
i u 33 u

o= 1a[1) (2 32p-15),
4 S

4’4 s2
(9.2.11)
@) uF( 11 ) 32)
a(u)=+/=F|--,=;1|=] .
2 4° 4 u?

Substituting the result for u(r), this gives the spectral curve in terms of 7.

The Spectral Curve in Terms of Triplet Characters

The second main result of [VF07] was the modular one-form ¢, cf. (9.2.1), expressed by
characters of the triplet model. It is already clear that the denominator of this quantity
must contain y; — ¥, since it is a modular form of weight one. After some trials and errors

with series expansions in Maple, I could prove that

VLS
T X1—Xo

c(1) 9.2.12)

with the characters as in (8.3.8). This expression equals the one proposed by Nahm, cf.
(9.2.1) and [Nah96]. Thus, up to the explicit parameter 7, I have obtained a and ap in

terms of characters, namely

de(7) d
a(t)=—-——, ap()= (1 —T—) c(1). (9.2.13)
dr dr

Below, I will argue that the full prepotential can now be written as a function of 7.

The Prepotential in Terms of ¢
M. Matone derived in [Mat95] the relation:
1 .
F(u) = Ea(u)ap(u) —inu. (9.2.14)

This works as follows. The periods of the spectral curve (9.1.3) can be transformed under
SL(2,7), which leads to 3
d¥ dA

aAp+bA=Ap= dAdA (9.2.15)
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Integrating this expression, I find that
1, 1,
F = EaCAD+§bdA +bcAAp+F. (9.2.16)
The combination )
F(a) - EaaD 9.2.17)

is invariant under the monodromy group of the spectral curve, which is generated by

-1 2 1 0 »

M, = . M= , M_g=M;' M. (9.2.18)
0 -1 -2 1

This group can be determined by expanding (9.2.11) around ug € {oo,+s} and by letting

u encircle each of these points, i.e. u— ugy— exp{2mi}(u— up), [Bil96, SW94, DP99, Ler97|.

Since (9.2.17) is invariant under the monodromy group, it can be identified with u, which

parametrizes the equivalence class of periods a, ap under this group.
Inserting the results on a and ap above and that on u, (9.2.8), I end up with

(@)28
(1) '

ins

F(1) = 3

2
r(dc(ﬂ) ey 3 9.2.19)

dr dr

1
2
Thus, in our paper [VF07], Flohr and I obtained all basic quantities of SU(2) Seiberg-Witten

theory, including the instanton contributions, in terms of 7. In particular, we determined

the spectral curve by means of characters of the triplet model.
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Conclusion 10

In this thesis, I have been concerning myself with geometry as a source for a logarithmic
deformation of conformal field theories. In this context I have been investigating two different

geometric scenarios.

The first has been the conformal supersymmetric be-system on R! x S! with target manifold
CP!. The source for its logarithmic deformation is the extension of its local representation
spaces to spaces of distribution forms on CP!. In particular, the bosons had to be loga-
rithmically deformed, because it turned out that they describe the different vacuum sectors

which are compounded by the instantons.

The second has been the purely fermionic conformal bc-system, with domain on a branched
covering of CP! and with global monodromy group. This time, the target space is C and the
source for the logarithmic deformation consists in the twisted representations of the mon-

odromy group.

In order to conclude my work, I will now bundle the questions which remained open and

deserve further investigation from my point of view.

Bosons on Branched Coverings It would be interesting, also with an eye towards the
supersymmetric conformal bc-system, to study bosonic ghosts on branched coverings. The
representations of the monodromy group are analogous to those of the fermions, and the
operator product algebra is also quite similar. If the algebraic surface is again a torus,
it might be the case that the four-point function of the bosonic twist fields also reveals
information about its periods for the following reason. It would be valuable, if there was
a way to not only bosonize the bosonic ghosts but also the bosonic twist fields. Since
the bosonized ghosts must be extended by an auxiliary fermionic system, I could imagine
that similar works for the twist fields, such that the situation might again be reduced to

considerations of fermionic ghosts on the torus.

Holomorphic Mappings between Compact Riemannian Surfaces The two scenarios
that I have considered might be related by another publication of Frenkel and Losev [FLO7].
There, the authors consider the CSbc with domain and target manifold CP!. In general,
the holomorphic functions (i.e. solutions to the instanton equation) can be classified in three

types: constant functions, meromorphic functions and functions with higher ramifications.
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Frenkel and Losev claim that the transition from the conformal CSbc with target C* to
the conformal CSbc with target CP! must be accompanied by an inclusion of meromorphic
functions. Therefore, the solutions to the instanton equation must exceed the subspace of
constant vacuum configurations. Consequently, Frenkel and Losev interpret the additional

meromorphic functions as instanton effects.

They further propose that the CSbc on CP' can be modelled by the CSbc on C*, if
the action of the latter is enlarged by additional operators. These operators would then
mimic the extension of the vacuum configurations to meromorphic functions. In [FLNO0§|,

the same authors proposed that those deformation terms in the action are identical to the
Grothendieck-Cousin fields.

In appendix C, I have tried to prove that the approach of Frenkel and Losev [FLO7] to the
CSbc on CP! is isomorphic to my approach in part one of this thesis. This was only successful
for the Grothendieck-Cousin operator and the representation spaces. In particular, I could

not determine an isomorphy between the respective Grothendieck-Cousin fields.

It would be favorable if the isomorphy did exist and could be proven.

From the Large Volume Limit Back to Physics If the extended representation spaces
of the theories considered in part one of my thesis are indeed the nonperturbative state
spaces, a new kind of perturbation theory should be possible, which does neither destroy the
kinematics, induced by the curved target space, nor the topological features — in particular
one retains all vacuum solutions, not running into the putative factual constraint to select a
particular background. This new perturbation theory consists in varying the scaling paramter
A of the metric, thus moving away from the large volume limit in the moduli space of metrics.
Frenkel, Losev and Nekrasov suggest to check if the non-diagonal representations of the
Hamiltonian disappear for finite values of A, by which the anti-instantons get reanimated,
[FLNOG6, pg. 89f]. There is an even more important reason for trying this kind of perturbation
theory. The state spaces in the large volume limit have been obtained by a succession of
transformations of the physical spectrum of the unitary Morse theories underlying the models
under consideration. The rationale was to derive the perturbative spectrum, multiply it by
some exponential by which unitarity is broken, go to the large volume limit and derive the
nonperturbative states by a conjecture. The way back to physics would consequently be
to turn the scaling parameter finite and divide the proposed nonperturbative states by the
exponential which broke unitarity. It is inevitable to apply the perturbation theory described
above in order to obtain information about the former physical theory. If the conjecture on
the nonperturbative state spaces was correct, one would thereby gain information on the

nonperturbative sector of the (more) physical theory.

118



The Prepotential of Seiberg-Witten Theory Maybe I was wrong and, after all, it is pos-
sible to express the moduli parameter u, cf. (9.2.8), of pure gauge SU(2) Seiberg-Witten
theory in terms of characters of the triplet model. At least, I did not prove the contrary.
One should look for combinations of the characters that are invariant under the monodromy

group (9.2.18) of the spectral torus.

The Partition Function of Seiberg-Witten Theory It would be nice if the partition func-
tion of pure gauge SU(2) Seiberg-Witten theory could be written in terms of characters of
some CFT. In [NOO03], N. Nekrasov and A. Okounkov claim that the dual partition function
equals a correlation function of free fermions, and possibly the corresponding CFT can be

specified.
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Topological Field Theories A

In this chapter, I will specify what I understand under the topological sector of a field theory.
This short summary is along the lines of [BBRT91, Wit82, Wit88a, Wit88b].

Let (X, g) be a symplectic, oriented Riemannian manifold with Euclidean metric g, (£, h)
another such manifold and x:X — X an embedding. The fields will be sections of some Z,
graded vector bundle over X, and I assume that there exists an action for the field theory.

The ingredients of the topological sector are:

O An operator Q, the BRST charge, wich is odd graded and globally defined on X and

3. The BRST charge has a nilpotent action on the fields and state spaces.
0 Topological state spaces and topological observables in the cohomology of the BRST

charge. Furthermore, I assume that the state spaces have dual vector spaces and a
well defined pairing. The cohomology of Q is invariant under smooth variations of the

metrics g and h.
0 Even graded and Q-exact fields Ty and T}, the stress tensors with respect to X and Z.

In other words, the Lagrangian must be a combination of terms that are Q-exact or

metric independent.
O Correlation functions which can be obtained from a path integral. They vanish if one

plugs into them a Q-exact observable and Q-closed fields.
O A transformation of the action into a first order form by which the toplogical sector

localizes on the vacuum configurations and exclusively on the instantons.

What consequences follow from these attributes? If £ <R x M, there exists a generator
of time translations H = [y, T 9. This operator is Q-exact and all correlation functions of
Q-closed fields vanish if it is inserted. Consequently, the topological sector does not contain

dynamical fields.

For the same reason, if a topological and a Q-exact observable is inserted into the corre-
lation function and one varies it with respect to the metrics k& or g, the variation vanishes.
Therefore, the values of the correlation functions in the topological sector do not depend
on the metrics defined on £ and X. In physics, such diffeomorphism invariants are called
“topolgical invariants”, and the topological sector of a field theory is said to be generally

covariant. In this thesis, I use the term topological in this sense.

Provided that the action is Q-exact, the topological sector is invariant under global scale
transformations of h and g, namely for any set of topological observables the variation of the
path integral in the scaling parameter yields a correlation function of a Q-exact operator.

Theories with Q-exact actions are called cohomological, and T will only deal with this class.
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Due to invariance under global scale transformations, the correlation functions localize on

the classical solutions, and the topological sector is semiclassically exact.

Invariance under global scalings does not signify that the theory is conformally invariant.

This additionally requires invariance under analytic local rescalings of the respective metric.
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From the Sigma to the A-Model B

In this section I want to note down the symmetries of the N = (2,2) supersymmetric sigma
model and explain how the A-model is derived by the twisting procedure, cf. [Mar05]. Let
the conventions be as in chapter 3. The topological A-model and the sigma model with

= (2,2) worldsheet supersymmetry differ in the spin of the fermionic fields and otherwise
have the same action (3.1.1). The supersymmetry is generated by Qgj, where I = +,— are

the indeces of the R-charge and a =+, — the Lorentz indeces of the U(1) Lorentz symmetry:

1

Qars Qp-1=YsPur U, Qurl =+5Qur. (B.0.1)

The bracket is a supercommutator and J'@ is the generator of Lorentz transformations. The
gamma matrices are yl ap = bqp and yz ap = diag(i,—i), and the superfields transform under

6 =x%Qqr (x*! is a Grassmann valued constant), cf. [Mar05, pg 73]:

Ox?=x"" y?+x " 14, Ox%=x"" yi+x" 1%,
oyp® =2ik*" 0,x%— K_+cmﬂblllc, oy =2ix™t 0;x% —«x*~ Fgéﬂ_blllé, (B.0.2)
O =2ik"" 0zx%+x*t cmnbwc, Om® =2ik™ 0, x%+x " Fgénbwé.

These are the supersymmetries of the sigma model.

The internal R-symmetry allows for an axial and a non-anomalous vectorial fermionic U(1)

current:
J = —id: guzﬂi’w“ R 8ab”a‘”ij K (B.0.3)
J@=—id:ggnty®: @ =-idigpniyl:. -
They generate rotations of the fermions
vect: (g, y*) — eie(na,wa) , oy — e_ie(ﬂaﬂlla)
axial: (W% 9% —elwhy® | (wema)—e Py, ma). BOD
The supercharges transform according to these symmetries as
U9 0, Qusl=2Qus , JY Q41 =FQ s (.05

U9, Qes) =2Qus , U, Q4] =2Q s,

such that in particular [J, (“),Q] Q and the cohomology of Q is graded by the axial charge.
In general, the axial U(1) symmetry is (partially) broken.
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B.1 Twisting/Gauging the Sigma Model

I will now specify the fields for the sigma model, the A-model can then be obtained by a

redefinition of the Lorentz generator/®. This procedure is called twisting or gauging.

To make the transformation properties of the fermionic fields under Lorentz transforma-
tions explicit, I will introduce the spin-connection w, pretending that X is not flat. The
fermions have now the properties 7¢, ¢ €T'(Z,$* ® x*(T'X)) and 7%, yrel(Z, ST x*(TX)).
The bar over the latter tangent bundle denotes a section into the anti-holomorphic part,
§* are the spinor bundles of positive and negative chirality and T means a section. The
fields w* and 7% have spin +% and the other fermions have spin —%. The connection on

S*® x*(TX) — Z is obtained by D= DY g Lerx) +1ls® x* (DTX) for instance
i
Dy =0y + szw%rgcaszwc. (B.1.1)

Under the vectorial symmetry, ¢* and 7¢ transform with weight +% while the others have
weight —% and the bosons are invariant. The transformation properties of the supercharges

are listed below, and I included already the effect of redefining the Lorentz group:

U, () x Uy(1)  Ug(1) x Uy(1)
Qir | (+3,+1) 0,+1)
Q-+ (-1,+1) (1,+1) (B.1.2)
Q- |  (+3,-1) (-1,-1)
Q- | (-i-1 0,-1)

This redefinition is according to g€ .=yl _ %](”).1 Since it is not possible to discriminate
either of the U(1) symmetries, this redefinition is an equivalence relation of the theory in
case X is flat. One then still has the full supersymmetry. However, when passing to non-flat
domain manifolds, only the scalar supercharges survive, for they do not depend on the metric

or any related quantities such as the Levi-Civita connection.

After twisting it is reasonable to define new symmetry charges, a scalar and a one form

on X, as follows:

Q:=Q:++0—— , G.:=Qs_, Gz:=0Q_,. (B.1.3)

They are subject to the propery Q? =0, [Q, Gul = Py, and define the topological algebra of the
thus obtained A-model with BRST charge Q. The fermions have a new spin with respect
to J©). The field y is a Grassman valued scalar field while & = 7,, dzdx®+ ;5 dzdx? is
a selfdual one-form. This explains why twisting is the same as coupling the theory to the

U,(1) current (i.e. “gauging” the theory) according to S— S+1 [sx h* wy, ™ With respect to

I The choice of sign is for convenience and follows [Mar05, Wit88b].
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Q, the fields now transform with §:=xQ, k™~ =x =«x*", k** =0 and the rest can be read

off tabular B.0.2:

Ox%=xy? x4 =xy
Sy=0 oyt=0 (B.1.4)
omg =2ix 0zx“+x cmngwc om? =2ik 0,x% +x Fgéﬂlz’wé

From that tabular one also finds that there is a fermionic fixed point on the holomorphic

0;x%=0,x%=0 embeddings. These are called instantons.?

2For ](e,) =@ %]("), the BRST charge would be Q = Q4+— + Q_ and localization is on the anti-instantons 8, x% =

azx‘_’ =0.
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The Toric CSbc - Unfinished C

Frenkel et al. [FLNO8| use a different representation of the CSbc in order to derive the
Grothendieck-Cousin operators. It goes back to a publication of Borisov [Bor01| and has
two promising features. Firstly, the fields in the CSbc are not bosonized and the assumed
Grothendieck-Cousin field is also expressed in terms of the original fields. Secondly, it is
linked to another work of Frenkel with Losev [FLO7|, in which they already proposed that
the Thc on CP!, considered as a CSbec, should be deformed beyond its topological sector.

In [VF09] I used Frenkels and Losevs formalism in addition to the one described in sections
3.6.2 and 3.6.3. Thereby, I wanted to match my results with those of Frenkel et al. in [FLN0S,
FLO7|. Because it concerned my own investigations, I will briefly discuss the question if both
approaches are isomorphic. Unfortunately, I could not identify the Grothendieck-Cousin
fields, whereas I might have found a positive result for their zero modes, the Grothendieck-

Cousin operators.

C.1 Deformation by Holomorphic Completion

There exists another paper of Frenkel with Losev [FL0O7|, wherein the authors consider the
The without “gauge” field. One of the subjects was the question, how to tackle that theory

if formulated on nontrivial target spaces. The idea of the authors was as follows.

Frenkel and Losev started with the assumption that if £ =CP' and X = C/2niZ, the Thc
is an ordinary CSbc. Since X is compact, the solutions of the instanton equation dzx =0
are the constant embeddings, which they interpret as vacuum configurations. Thus, this

scenario only allows to take insight into the topological sector.

If, however, X was compactified to CP!, there appear further nontrivial holomorphic map-
pings, cf. [Jos02|, which Frenkel and Losev consequently interpret as instanton solutions
beyond the topological regime. It is not clear if the Thc with target CP! is conformal. How-
ever, Frenkel and Losev they assumed that this is the case if the target space is C/2nZ.
Therefore, they searched after a method which allows to reduce the situation of X =CP! to
the free CSbc on C/27wiZ, however, now deformed by additional operators. These operators
supposedly give an ingight into the dynamical sector of the Thc and, hence, must inherit

some information about the local geometry of the Thc on CP!.

By taking out of X sets of pairs of zeros and poles wi, Frenkel and Losev supplemented

the constant holomorphic by meromorphic embeddings, constant as CP!\ {wi} — C/2miZ and
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with simple poles and zeros at w;c—', keN. Thus, they end up with a stack of coverings
x: CP! — CP!, distinguished by the number k of singular points of x. Notice, however, that
the coverings are not branched since Frenkel and Losev did neglect the embeddings with

higher ramification.

Frenkel and Losev interpreted the meromorphic functions as a generalization of the CShc
by an inclusion of instantons, whereby the degree k measures the instanton sector. Since the
singularities of those functions should appear in their vacuum expectation values, Frenkel
and Losev concluded that the action of the CSbc with target C/27iZ must be deformed. In
order to analyze that, they made a chart transition to logarithmic coordinates as described
in section 3.5.1. This is also reasonable because the equivalence classes C/2rwiZ are naturally
expressed by means of the exponential. The vacuum expectation value of an instanton

solution should now yield

n
(Px(2))s+55s=C+ Z llog(z — w]) —log(z—w;)], (C.1.1)
i=1
where S+088S is the deformed CSbc action. Frenkel and Losev proposed that this change in

the action is caused by an additional term
0L(z,2) =-A¥Y+(2,2)+¥Y_(z,DIn(2)@(z) , A=1, (C.1.2)

with W, (2,2) = W4 (2) W4 (2), V4 (2) = expi+i [* pw)dw} and, similar, ¥4 (2) = exp{+i [* p(@)dd}.
Because A is dimensionless, this deformation can be interpreted as a movement in the moduli

space of conformal theories.

By means of a method of Zamolodchikov [Zam89], Frenkel and Losev calculated the impact
of these deformations on general fields F(z) of the CSbc. This amounts to applying the

Stokes-Green theorem (integral of motion) to!

1
05F5(z,2) = 55 d¢ 6L, 2)F(2). (C.1.3)

Of particular interest are the deformations of the stress tensor and the supercharge. A
calculation reveals that the stress tensor is not deformed, whereas the integral of motion for

the supercharge yields
O=f{dz Qs5(2,2) +dz [W4(2,2) - ¥_(2,2)]7(2)}, (C.1.4)

which is similar to the expression in [FLO7, pg. 67].

Frenkel et al. refer to these results in their later work [FLNO8, pg. 97]. They propose that

the zero modes of the operators in (C.1.2)

in(2)¥V_(z), -it(2)¥4+(2), (C.1.5)

LThis integral of motion is the first order correction (in 1) to 05 F = 0 [Zam89]. In principle, since A is dimensionless,

one has to include corrections to all orders.
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are identical with the cohomology operators 1mgf in the context of chiral bosonization, and
moreover with the Grothendieck-Cousin operators [FLN08, pg. 93f]. They conclude that the
supercharge in the context of their later work is deformed just the same way as in (C.1.4),
[FLNO8, pg. 97].

Since the integral of motion (C.1.3) does not introduce the Grothendieck-Cousin operators,
I looked for another CFT method that would deform the stress tensor in the appropriate
way and also the supercharge according to (C.1.4). This was the method by Fjelstad et al.
[FFH*02], that I used in chapter 4. By that means, I derived a deformation of the stress
tensor and of the supercharge which was similar to [FL07, FLNO08|, cf. [VF09]. In the same
publication I could also argue, that the cohomology of the deformed supercharge on the state

space is not changed by the deformation. Thus, everything seemed to be nice.

However, I did not check if the assumed Grothendieck-Cousin field of (C.1.2) is well defined
on the charged representation spaces, which is mandatory. Nor did I really extend Borisovs
vertex algebra to charged representations and then prove isomorphism to the representations
I have considered in chapter 3. Some steps into that direction I have done, however only
superficially, in [VF09], and in this chapter I wanted to complete them. However, I could
not determine either the representation spaces correctly, or the fields in (C.1.2) can not
be the Grothendieck-Cousin fields, though their zero modes satisfy the properties of the

Grothendieck-Cousin operators.

C.2 The Cohomology Operators in Logarithmic Coordinates

In order to simplify my discussion, I will set the homogeneity u to zero.

The CSbc in logarithmic coordinates, cf. section 3.5.1, does not cover the situation of the
CSbc on C/27iZ. Since the exponential is invariant under 27iZ, the field algebra should be
extended by some winding number operator Q and its conjugate Q* : [Q,Q*] =1. This yields

Borisovs’ vertex algebra [Bor(01], which is constituted by

Px(2) = V@, Pip(2) =1V I -0, U(2) + j* (2],

(C.2.1)
Py(2) ="y (2):,  Pi(2)=i:e” W @n(2):,
and the symmetrie fields

P+ (2)=jT(2)+0:W(2), ¢j-(2)=-j"(2)+0.U(2),
Pg(2)=i:m(2)0,W(2):, P2(2)=2(2)+0,y(2), (C.2.2)

¢r(2) =—:0,W(2)0,U(2)+i0,y(2)m(2) : .
Above I used 2(z) =-i:0,U(2)w(z): and

U(z) :Q*—if plw)dew , W(z)=Qlogz+x(z), (C.2.3)
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and the prime at the integral means that no additional “integration constant” should be

introduced.

Borisov interprets U and W as the scalar fields related to certain “currents” of bosons
on a two dimensional lattice, such that in analogy with (3.6.11) W(z) = —fz](l)(w)dw and
U(2) = - [*]P(w)dw, with JV(2) = —-Qz7! - 08,x(z) and J@(z) =ip(z). The Heisenberg Lie
commutation relations are only satisfied between JO and ](2), []ill),]i,zl)] =—-n0n,—m. Further,
[Uo,](()l)] =—[Q*,Q] =1, as is expected for “bosonic” currents, while [Wo,](()Z)] = [x0,ipo] = —1.
According to the idea to interpret the currents as two components on a lattice, it is now

reasonable to consider fields V(I,s,z) =:e!W@+sUW) . | e 7.

I will call the vertex algebra defined by (C.2.1), (C.2.2) and extended by V(0,s,z) as the
toric CSbec.

Remark In the context of the chiral de Rham complex, the introduction of V(0, s, z) means
that one has to generalize the state space further to power series in the zero modes py. This

is a first instance wherein Borisovs’ construction exeeds the usual CSbec.

Representation Spaces

In order to include charged representations, I define |p, qll, s) € F(p, qll,s):= F(pll,s) ® M*(q)
and try the Ansatz

Xn Ip,qll,s)=0, n>—-p, n#0, pnlp,qll,s)=0, nzp, n#0 ,
ipo Ip,qll, sy =1 |p,qll,s), Q Ip,qll,s)=slp,qll,s), (C.2.4)
V/n |P»C]|l»5>=0» ”l>—C], Ty |p,q|l,s>=0, an

This exceeds the discussion of Borisov [Bor01] who considered the situation p =g =0. It will
now be necessary to see if the operator product algebra is well defined on the representations

above.

Firstly, the representation spaces for the toric CSbc must include states that are iso-
morphic to V(I,s,z). This isomorphism is obtained by exp{l'xo}Ip, qll,s) =Ip,qll+1',s) and
exp{s'Q*}Ip,qll,s)=1p,qll, s+ ). In the language of vertex operators,

Y(10,017,0),z) =exp{IW(2)} , Y(l0,0l0,s),z)=exp{sU(2)}. (C.2.5)

This makes explicit that the vertex algebra defined by (C.2.1) does not lead out of a specific
representation with a fixed value of s, since it does not include Q*. I will denote by F(p, qll, s)
the vertex algebra of these fields with fixed value s and Q* excluded. Moreover, I define

normal ordering in the field modes to be taken with respect to |0,0/0,0).

In the representation F(p,qll,s), the fields of (C.2.1) have the OPEs

-1 (E)pﬂr ¢W(Z)¢in(w):_—l(£)q+s-

w Z—WwW \wW

¢x(2)pip(w) = (C.2.6)

Z—Ww
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When acting on a highest weight state, the mode expansions of the fields inherits the inho-

mogeneity in terms of a shift in the index, for instance

o0
Gx@Ip,qll, ) =2" )Y callzz " Ipgll,sy=€e* Y (P)nesz "Ip,qll,s) (C.2.7)
n=0 n=-p-s, n#0
and similar for the other fields. In particular, up to the special réle of xy, when s =0, the
field mode expansion equals that for the CSbc. Thus, the CSbc has a representation on the

representation spaces above. The OPEs between the symmetry fields and the dynamical
fields (C.2.1) follow accordingly.

The conformal weights and U(1) charges of the highest weight states equal

1 1
A (| ’ |l,S>):—— ( _1)+_ ( _1)+l8,
or\IP g 219 p 2‘] q (C2.8)

((pj’)() |P»C]|l»3>=q_l» ((p]+)0 |P»C]|l»3>=_6]+5;

and the operators measuring these quantum numbers commute with each other. The field

V(l',s, z) shifts the conformal weight of |p, gll, s) by
To-e" Y 1p gl sy = (Us'+1's) |p,qll+1,s+5, (C.2.9)

and has a bosonic and fermionic U(1) charge of value —1" and 0, respectively. In the subsector
with s =0 and Q* excluded, all fields in (C.2.1) have the same conformal weights and U(1)
charges as the fields of the usual CSbc, wich follows from the OPEs and section 3.5.1, and

there is not operator leading out of that representation.

OPEs of the Operators V(l,s, z)

If T restrict my discussion to the conformal vacuum |0,0(0,0), I can derive an OPE between
the fields V(I,s,2) :

eSU@IWW) — (5 _ ()15, osU@IWW . in F(0,0]0,0). (C.2.10)

It turns out, however, that I am not able to tackle the OPE in the charged representation

spaces in any reasonable way. Namely, if p#0, I find that

_fz(ﬂ)pi (C.2.11)

—if p(ﬁlc(w)d( o) cel

exp =exp

Remark It seems that the charged representations that I have defined do not lead to nice
results for the OPE betweeen e/ and V.
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Identification of the CSbc

Due to the results above, the CSbc is a subsector of the toric CSbc with s =0 and Q*
excluded. I will now identify the bosonic and fermionic parts of the CSbc within f(p, qll,0).

o

Notice, that the term “identification”; signified by , is only appropriate up to the special

role played by xp.
The representations I_T(p,qll,O) are graded by the bosonic and fermionic U(1) charges,
F(p,q|l,00= € F(p,q+nll+n—m,0), (C.2.12)
n,mez
whereby 7 and m count the fermionic and bosonic charges, respectively. I made no distinction

between @, M*(q), and @, M* (g — n), since the fermionic representation spaces are all

isomorphic, cf. (3.4.2).

The Fermionic Subsector The fermionic part of the CSbc appears in the toric CSbc as
the subspace ?(O,qlq,O) ~ M*(q). Indeed, ¢y and ¢i; have the correct OPE on 10,g|q,0)
and the appropriate quantum numbers with respect to T*(z) and ¢;+(2z). In particular, this
holds for |0, glqg,0), such that I set |0,glq,0) =|q)+ € M*(q).

The Bosonic Subsector The bosonic subsector is given by ﬁ(p,Ol -p,0) ZN(p). Namely,
the fields have the correct OPE on |p,0]|— p,0) and the quantum numbers as expected, such
that T set |p,0]—p,0) = v, ®10), € N(p).

The Grothendieck-Cousin Operators

In order to derive the Grothendieck-Cousin operators, I used the recipe to extend the bosonic
representation space by the missing degenerate part, cf. sections 2.6.2 and 3.6.3. The affected
representation space takes now the form F(1,0/-1,0) and T have to look for a state that has

the same quantum numbers as the hightes weight vector |1,0]—1,0).

The states |p,0|—p,0) , |-p+1,0lp—1,0) and |p—1,1|-p+1,1) do all have the same
conformal weight, but only |p,0]—p,0) and |p—1,1|— p+1,1) have the same U(1) charges
(both with respect to the bosonic and the fermionic charge). Therefore, the analogue of
e? &y : N(1) — N(1) should be the mapping eg : |1,0/1,0) — |1,1|1,1). Moreover, I propose
that the logarithmic extension N7(1) is now the representation of (C.2.1) on |0,1]0,1), and T
will denote that by Fr(1,0/-1,0),

In analogy with the discussion in section 3.6.3, I am looking for an operator g, such that

€o

lg ) (C.2.13)
10,0[0,0) € F(0,0|0,0)
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The operator
g =impe " (C.2.14)

does the job. Moreover, it satisfies 9§0 do [g,¢(w)] =0 for all fields ¢ in (C.2.1). Therefore,
the sequence
= F(p,0| - p,0) = F(p—1,0|—p+1,0) — -+ (C.2.15)

is exact, whereby F(p,0|-p,0) = F(p,0| - p,0)® F;(p,0| - p,0) are the extended representation

spaces.

In that respect, it is reasonable to identify g with the cohomology operator ng in section
3.6.3, and with the Grothendieck-Cousin operator.

The Grothendieck-Cousin Field

To generalize the operator above to the Grothendieck-Cousin field, it is at hand to try the
Ansatz
i:m(z)e” V@, (C.2.16)

Indeed, when the fields ¢ of (C.2.1) are in the representation F(0,0/0,0), one may calculate
the OPEs by means of (C.2.10) and derive that

fdw i:m(2)e”V@: pw)=0. (C.2.17)
z
For instance, use

. _ i:m(w)e V@-Ww) .

in(2)e”"? i (w) = - e (C.2.18)

This calculation, however, turns nontrivial if the representation space is charged, cf. (C.2.11).
For that reason, I could not derive the Grothendieck-Cousin field in terms of Borisovs’ vertex

algebra.
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